
Store FullwordSTY R1,D2(X2,B2) RXY-a

E3 R1X2 B2DL2 DL2DL2 DH2DH2 50

STY is used to copy the fullword stored in the register specified by operand 1 into the fullword
memory location specified by operand 2. STY is similar to ST but provides a 20-bit signed
displacement in the base/displacement address for operand 2, while ST provides a 12-bit
displacement. As a result, operand two, the fullword in memory, must lie within 524,287 bytes
beyond the location designated by a base register or base-and-index-register pair, or 524,288
bytes before that location. This is a much larger range than the 212 = 4,096 byte range provided
by ST.

STY has a two-byte opcode, E350.

Consider the following example,

1111 2222 44443333 88885555 6666 7777

0000 FFFF FFFFFFFF 0000FFFF 0000 0000

R9

STY R9,AFIELD

Memory
(Before)

...

0000 5555 77776666 00008888 0000 0000Memory
(After)

...

AFIELD

In this case, the contents of register 9 are copied to the fullword in memory denoted by AFIELD.
This operation destroys the previous contents of AFIELD but leaves R9 unchanged.

 STY provides an index register which may be coded as part of operand 2. Notice that in the
previous example, no index register was specified. When the index register is omitted, the
assembler chooses R0, which does not contribute to the address. The following example
illustrates this idea.

 STY R9,AFIELD(R5)

 The assembler converts AFIELD to a base register and displacement, while R5 is the index
register. For instance, the expression AFIELD(R5) might (we cannot determine the base register)

be equivalent to the explicit address 0(R5,R3) - displacement = 0, index register = R5, base
register = R3. The effective address is computed by adding the base register contents to the
index register contents plus the displacement. If the index register contains an “8”, then
AFIELD(R5) refers to the fullword that begins at an 8 byte displacement from the beginning byte
of AFIELD. The following examples illustrate several explicit addresses that include an index
register.

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 100A 100BMemory Address

1000R3

4R4

8R5

Explicit

Address:

4(R4,R3)

0(R5,R3)

4(R5,R3)

100C

Memory

 In the first explicit address, 4(R4, R3), the effective address is computed by adding the
contents of base register 5, the contents of index register 3, and the displacement (1000 + 4 + 4
= 1008). The second address 0(R5, R3) is computed as 1000 + 8 + 0 = 1008, and the third
address, 4(R5, R3) is computed to be 1000 + 8 + 4 = 100C (hexadecimal).

 If an index register is not explicitly coded, as in the instruction “STY R9,AFIELD”, the
assembler chooses R0 as the index register, which does not contribute to the effective address.

Examples

 Some Unrelated STY’s

 R7 = X’0000000000001000’

 R8 = X’0000000000000004’

 R9 = X’0000000000000008’

 AFIELD DC F’20’ AFIELD = X’00000016’

 BFIELD DC F’-1’ BFIELD = X’FFFFFFFF’

 CFIELD DC F’0’ CFIELD = X’00000000’

 STY R7,AFIELD AFIELD = X’00001000’

 STY R8,AFIELD AFIELD = X’00000004’

 STY R8,BFIELD BFIELD = X’00000004’

 STY R7,AFIELD(R8) CHANGES BFIELD TO X’00001000’

 STY R7,AFIELD(R9) CHANGES CFIELD TO X’00001000’

Tips

1. Operand 2 should reference an aligned fullword in memory. It is possible to store the

contents of a register into 4 bytes of memory that are not aligned on a fullword, but the
assembler will warn you that operand 2 is not properly aligned.

2. You might consider using STY instead of ST in cases where you have maxed out a base

register. Rather than adding another base register to fix an addressability error, consider
using STY to help solve your problem.

3. Many RX instructions have companion instructions with the RXY-a instruction format . RXY-

a instructions all provide 20-bit displacements (range 0 - 1,048,575) instead of 12-bit RX

displacements (range 0 – 4095). For example, LY is the companion Load Fullword operation

to L.

