The **STH** instruction has two operands: the first operand is a general purpose register, and the second operand is a halfword storage area in memory. The effect of the instruction is to copy the contents of bits 16-31 of the Operand 1 register (the rightmost two bytes) into the halfword specified by Operand 2. The condition code is unaffected by this instruction. Consider the following example.

```
STH R9,AFIELD
```

- **Memory (Before):** 55 77 FF FF
- **Memory (After):** 00 00 12 34 00

The rightmost two bytes of register 9 are copied to the halfword AFIELD, destroying the previous contents. The register value is unchanged by this operation.

Since **STH** is an RX instruction, an index register may be coded as part of operand 2 (see Explicit Addressing).

Examples

Some Unrelated Store Halfwords

- \(R4 = X’00000000’ \)
- \(R5 = X’12345678’ \)
- \(R6 = X’00000004’ \)

- **AFIELD DC H’4’**
 - AFIELD = X’0004’
- **BFIELD DC H’25’**
 - BFIELD = X’0019’
- **CFIELD DC H’0’**
 - CFIELD = X’0000’

- **STH R4,AFIELD**
 - AFIELD = X’0000’
- **STH R4,BFIELD**
 - BFIELD = X’0000’
- **STH R4,CFIELD**
 - CFIELD = X’0000’
- **STH R5,AFIELD**
 - AFIELD = X’5678’
CONSIDER THE NEXT TWO CONSECUTIVELY EXECUTED INSTRUCTIONS
LH R8, AFIELD R8 = X'00000004'
STH R5, AFIELD(R8) BFIELD = X'5678'