
M R1,D2(X2,B2) RXMultiply

Op

Code
R

1
X

2
B

2
D

2
D

2
D

2

 The Multiply instruction performs 2’s complement binary multiplication. Operand 1 names an
even register of an “even-odd” consecutive register pair. For instance, R2 would be used to
name the R2 / R3 even-odd register pair, and R8 would be used to name the R8 / R9 even-odd
register pair. Operand 2 is the name of a fullword in memory containing the multiplier. Before the
multiplication, the even register can be left uninitialized, while the odd register contains the
multiplicand. After the multiplication, the product occupies the even-odd register pair in 2’s
complement format.

Uninitial ized Multipl icand

Even Register Odd Register
Before

Multiplication

Product Product

Even Register Odd Register
After

Multiplication

 If the product is less than 2

31
 - 1 = 2,147,483,647 then the answer can be found in the odd

register. We may then use CVD and ED in order to print the product. Otherwise, the even-odd
pair must be treated as a large (64 bit) 2’s complement integer. Printing such an integer requires
special treatment which we will consider later. First, lets look at an example multiplication. We
assume that AWORD is a fullword in memory containing the integer 10.

 L R9,=F’47’ PUT MULTIPLICAND IN ODD REGISTER

 M R8,AWORD MULTIPLY 47 TIMES 10

00000000 0000002F

R8 R9
Before

Multiplication

00000000 000001D6

R8 R9
After

Multiplication

0000000A

AWORD

 First the multiplicand, 47, is loaded into the odd register. The even register is left uninitialized.
The multiplier, AWORD, contains a 10 and is not affected by the multiplication. After the
multiplication, the register pair R8 / R9 contains a 64 bit 2’s complement integer. Since the
product is sufficiently small, R9 by itself contains a valid representation of the product.

 When the product will not fit in the odd register, we must provide special handling in order to
convert the product to a packed representation. If it takes two registers to hold the a result, we
will call the answer a “double precision” result. Unfortunately, there is no instruction that will
convert a 2’s complement double precision integer to a packed decimal format. CVD can be
used to convert a single register to packed format, so we will investigate how this instruction can
be used on both registers. To simplify the computations, we will assume that the registers
contain 4 bits instead of 32. Suppose a multiplication has produced a double precision product of
83 in registers R4 and R5. Then, since 83 = B’01010011’, and assuming 4 bit registers, R4 =
B’0101’ and R5 = B’0011’. If we use CVD to convert R4 we would get 5, when in fact, the bits in
R4 represent 80 if we look at the 2’s complement integer contained in R4 and R5. We are off by
a factor of 2

4
 =16 since 5 x 16 = 80. If we use CVD to convert R5 we would get 3, which is what

the bits in the double precision integer represent. The true answer can be recovered by adding (5
x16) + 3. This is illustrated in the diagram below.

0101

R4

0011

R5

CVD 5

CVD 3

5 x 16 = 80

+ 3

83

This procedure also works for some negative double precision integers. Consider the double
precision integer -108. Using 4-bit registers R4 and R5, we see that R4 contains B’1001’ and R5
contains B’0100’. CVD converts R4 to -7 when, in fact, the bits in R4, B’1001’, represent -112 = -
7 x 16. R5 = B ‘0100’ is converted to 4. Adding -112 + 4 we get the correct double precision
answer -108. This is illustrated below.

1001

R4

0100

R5

CVD -7

CVD 4

-7 x 16 = -112

+ 4

-108

 A problem with this method occurs when the odd register contains a 1 in the high-order bit.
Consider the double precision integer 60 = B’00111100’. Assume R4 contains B’0011’ and R5
contains B’1100’. The conversion is illustrated below.

0011

R4

1100

R5

CVD 3

CVD -4

3 x 16 = 48

-4 + 16 = 12

60

R4 is converted to 3, multiplied by 16, and correctly converted to 48. On the other hand, R5 is
converted to -4 since the high order bit was a 1. R5 should have been converted to 12. We are
off by a factor or 16. If we add 16, the conversion to 12 will be correct.

 These examples lead us to a conversion algorithm for double precision results:

 1) Test the odd register to see if it is negative. If it is, we need to add 2

32
 = 4,294,967,296 (

we are using 32-bit registers instead of 4-bit registers) to the final result. An easy way to do this
is by adding 1 to the even register - the rightmost bit in the even register represents 2

32
.

 2) Convert the even register to packed decimal and multiply the result by 2

32
.

 3) Add in the result of converting the odd register to packed decimal.

 Here is an example in assembler language of the algorithm described above. The example
illustrates how a double precision result in R4 and R5 could be converted to packed decimal in a
doubleword.

 LTR R5,R5 DOES R5 LOOK NEGATIVE?

 BNM LOOKSPOS DON’T ADD TO R4 IF POSITIVE

 A R4,=F’1’ WE ARE OFF BY 2 TO THE 32 POWER

 LOOKSPOS EQU *

 CVD R4,RESULTRT CONVERT AND GET READY..

 MP RESULT,TWOTO32 MULTIPLY BY 2 TO THE 32

 CVD R5,DOUBWORD CONVERT ODD REG TO DECIMAL

 AP RESULT,DOUBWORD ADD THE TWO COMPONENTS

 ...

 RESULT DS 0PL16 NEED A LARGE AREA TO HOLD DOUBLE PRECISION

 RESULTLF DC X’00000000’ NEEDS TO BE 0’S AFTER CONVERTING R4

 RESULTRT DS PL6 WORK AREA FOR R4

 TWOTO32 DC P’4294967296’ 2 TO THE 32ND POWER

 DOUBWORD DS D CONVERSION AREA FOR CVD

Examples

 Some Unrelated Multiply Instructions

 L R7,=F’100’ MULTIPLICAND GOES IN THE ODD REGISTER

 M R6,=F’10 R6 = X’00000000’ = 0, R7 = X’000003E8’ = 1000

 L R7,=F’3’ MULTIPLICAND GOES IN THE ODD REGISTER

 M R6,=F’-2’ R6 = X’FFFFFFFF’, R7 = X’FFFFFFFA’ = -6

 L R3,=F’8’ MULTIPLICAND GOES IN THE ODD REGISTER

 M R2,=F’1’ R2 = X’00000000’, R3 = X’00000008’

 L R3,=F’8’ MULTIPLICAND GOES IN THE ODD REGISTER

 M R2,=F’0’ R2 = X’00000000’, R3 = X’00000000’

 L R5,=X’FFFFFFFF’ ALL 1’S IN ODD REG

 M R4,=F’2’ MULTIPLYING BY 2 SHIFTS ALL BITS 1 BIT LEFT

 R4 = X’00000001’, R5 = X’FFFFFFFD’, THIS IS A

 DOUBLE PRECISION RESULT

Tips

1) Know your data! In most cases, the product of a multiplication will fit in the odd register where
it can easily be converted back to packed decimal. If you have any doubts about the size of a
generated product, you must convert the double precision result from both the even and odd
registers as described above.

