The Load and Test Register instruction copies the rightmost 32 bits (4 bytes) of the register specified by Operand 2, into the rightmost 32 bits of the register specified by Operand 1. The contents of Operand 2 are unchanged by this operation. In this respect LTR is equivalent to the LR instruction. The difference between these instructions is that LTR sets the condition code based on the final contents of the Operand 1 register.

<table>
<thead>
<tr>
<th>Condition Code</th>
<th>Meaning</th>
<th>Test With</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Zero)</td>
<td>Operand 1 = 0</td>
<td>BE, BZ</td>
</tr>
<tr>
<td>1 (Negative)</td>
<td>Operand 1 < 0</td>
<td>BL, BM</td>
</tr>
<tr>
<td>2 (Positive)</td>
<td>Operand 1 > 0</td>
<td>BH, BP</td>
</tr>
</tbody>
</table>

Consider the instruction below.

LTR R5,R10

The contents of register 10 are copied to register 5, destroying the previous value in register 5. Register 10 is unaffected by the operation. Since the contents of R5 is a positive binary integer after completion of the operation, the condition code is set to 2 (High/Positive). The diagram below illustrates this operation.

LTR R5,R10

R10 (Before) R10 (After)

11 11 11 11 12 34 56 78
11 11 11 11 12 34 56 78
FF EE DD CC BB AA 99 88
FF EE DD CC 12 34 56 78

R5 (Before) R5 (After)

CC = High/Positive
Some Unrelated LTR's

R4 = X'FFFFFFFF'
R5 = X'000000028'
R6 = X'00000004'
R7 = X'00000000'

LTR R4, R5 R4 = X'00000028' R5 = X'00000028'
 Cond. Code = 2 High/Positive
LTR R5, R4 R5 = X'FFFFFFFF' R4 = X'FFFFFFFF'
 Cond. Code = 1 Low/Negative
LTR R5, R6 R5 = X'00000004' R6 = X'00000004'
 Cond. Code = 2 High/Positive
LTR R6, R5 R6 = X'000000028' R5 = X'000000028'
 Cond. Code = 2 High/Positive
LTR R6, R7 R6 = X'000000000' R7 = X'000000000'
 Cond. Code = 0 Zero
LTR R4, R4 R4 = X'FFFFFFFF'
 Cond. Code = 1 Low/Negative

Tips

1) **LTR** is commonly used to test the contents of a single register in order to determine if the binary number is the register is positive, negative or zero. For example, the following code illustrates how to test the contents of register 5.

```
LTR  R5, R5    SET THE CONDITION CODE
BM    NEGATIVE    IS R5 < 0 ?
BP    POSITIVE     IS R5 > 0?
ZERO  EQU *
...  NEGATIVE EQU *
...  POSITIVE EQU *
```