The Load Complement instruction treats the rightmost 32 bits of the Operand 2 register as a two's complement integer and computes its additive complement. Remember that if you add an integer and its additive complement, the result is zero. (The complement of 5 is -5. The complement of -33 is 33.) The computed complement is copied into the rightmost 32 bits of the Operand 1 register. The contents of Operand 2 are unchanged by this operation. LCR also sets the condition code based on the final contents of the Operand 1 register.

<table>
<thead>
<tr>
<th>Condition Code</th>
<th>Meaning</th>
<th>Test With</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Zero)</td>
<td>Operand 1 = 0</td>
<td>BE, BZ</td>
</tr>
<tr>
<td>1 (Negative)</td>
<td>Operand 1 < 0</td>
<td>BL, BM</td>
</tr>
<tr>
<td>2 (Positive)</td>
<td>Operand 1 > 0</td>
<td>BH, BP</td>
</tr>
<tr>
<td>3 (Overflow)</td>
<td>Overflow</td>
<td>BO</td>
</tr>
</tbody>
</table>

An overflow condition can occur only when Operand 2 contains the maximum negative value that will fit in a 32-bit register (-2,147,483,648). An overflow occurs because the complement will not fit in a single register. Assume R10 contains x'00000001' = 1. The additive complement of 1 is -1 = X'FFFFFFFF'.

LCR R5, R10

The rightmost 32 bits of register 10 are complemented and copied to register 5, destroying the previous value in register 5. At completion, register 5 contains a 2's complement binary number equivalent to -1 in decimal. Register 10, which contains a binary number equal to 1 in decimal, is unaffected by the operation. Since the contents of R5 is negative after completion of the operation, the condition code is set to 1. The diagram below illustrates this operation.

LCR R5, R10

R10 (Before) R10 (After)

```
11 11 11 11 00 00 00 01
FF EE DD CC BB AA 99 88
```

```
11 11 11 11 00 00 00 01
FF EE DD CC FF FF FF FF
```

R5 (Before) R5 (After)

CC = 1 = Low/Negative
Some Unrelated LCR’s

R4 = X’FFFFFFFE’ -1
R5 = X’000000028’ +40
R6 = X’80000000’ MAXIMUM NEGATIVE VALUE
R7 = X’00000000’ ZERO

LCR R4, R5 R4 = X’FFFFFFFD8’ R5 = X’000000028’ Cond. Code = Negative
LCR R5, R4 R5 = X’000000001’ R4 = X’FFFFFFFE’ Cond. Code = Positive
LCR R5, R6 R5 = X’FFFFFFFE’ R6 = X’80000000’ Cond. Code = Overflow
LCR R6, R5 R6 = X’FFFFFFFD8’ R5 = X’000000028’ Cond. Code = Negative
LCR R6, R7 R6 = X’000000000’ R7 = X’000000000’ Cond. Code = Zero
LCR R4, R4 R4 = X’000000001’ Cond. Code = Positive