
EDMK D1(L1,B1),D2(B2) SS
1

Edit and Mark

Op

Code
LL

1
B

1
D

1
D

1
D

1
B

2
D

2
D

2
D

2

 Packed decimal fields can be converted to a character format using the EDMK instruction.
Additionally, editing symbols and features like commas, decimal points, and leading zero
suppression can be included in the character version of the packed decimal field that is being
edited. EDMK is equivalent to the ED instruction but offers additional functionality which will be
covered later in this discussion.

 The first step in editing a packed decimal field is to create an “edit word” which is a pattern of
what the character output of the edit process should look like. Typically, the edit word is moved
to a field in the output buffer which is being built, prior to printing. Then the packed decimal field
is “edited” into the output field, destroying the copy of the edit word.

 First, we consider how to construct an appropriate edit word for a given packed decimal field.
This can be accomplished by defining a string of hexadecimal bytes that represents the edit word.
Each byte in the edit word corresponds to a byte in the edited character representation. In
creating the edit word there are a collection of standard symbols which are used to describe each
byte:
 X’40’ This symbol, which represents a space, is usually coded as the first byte of the
 edit word where it acts as a “fill character”. The fill character is used to replace
 leading zeroes which are not “significant”.

 X’20’ Called a “digit selector”, this byte represents a position in which a
 significant digit from the packed field should be placed.

 X’21’ This hexadecimal byte represents a digit selector and a significance starter.
 Significance starts when the first non-zero digit is selected. Alternatively, we
 can force significance to start by coding a single x’21’ in the edit word. In this
 case, significance starts in the byte following the x’21’. Significance is
 important because every significant digit is printed, even if it is a leading zero.

 X’6B’ This is the EBCDIC code for a comma.

 X’4B’ This is the EBCDIC code for a decimal point.

 X’60’ This is the EBCDIC code for a minus sign. This symbol is sometimes coded on
 the end of an edit word when editing signed fields. The x’60’ byte will be
 replaced with the fill character if the number being edited is positive. If the
 number is in fact negative, the x’60’ will not be “filled”, and the negative sign will
 appear in the edited output.

 X’C4C2’ The EBCDIC version of “DB” (Debit). This functions like the x’60’. Coding
 these symbols at the end of an edit word causes “DB” to appear in the output
 if the field being edited is negative, otherewise the “DB” is “filled”.

 X’C3D9’ The EBCDIC version of “CR” (Credit). This functions like the Debit symbol
 above. When the number being edited is negative, the “CR” symbol will
 appear in the edited output, otherwise it will be “filled”.
 X’5C’ The EBCDIC symbol for an asterisk. This character is sometimes used as
 a fill character when editing dollar amounts on checks.

 We now consider a sample edit word and the output it would create for several packed fields.

 EDWD DC X’4020206B2021204B202060’

 AOUT DC CL11

 APK DC PL4’45387’

Assume we execute the instructions below,

 MVC AOUT,EDWD

 EDMK AOUT,APK

First, the edit word is moved to a field in the output buffer. Then the packed field is “edited” into
the output field. The results are illustrated in the diagram below.

40 20 20 6B 20 21 20 4B 20 20 60

00 45 38

40 40 40 40 F4 F5 F3 4B F8 F7 40

7CAPK

EDWD

AOUT

The diagram indicates the results of the edit process: The fill character (x’40’) is unaffected, and
is left in its position. The first decimal digit, 0, is “selected” by the first x’20’, and since leading 0’s
are not significant, the x’20’ is replaced by the fill character. The second digit, 0, is also selected,
and it too, is filled with a x’40’. Since significance has not started, the x’6B’ is filled with x’40’.
The first non-zero digit, 4, is selected and this signals that significance has started. (Any non-
zero digit which is selected turns on the significance indicator.) Each digit after the 4 will appear
in the edited result. The “4” is replaced with its character equivalent - x’F4’. At this point, the
address of AOUT+4 (the position occupied by the first significant digit x’F4’, is copied into register
1. (The ED instruction would not initialize register 1.) Afterward, the “5” is selected and its x’20’
is replaced with x’F5’. The “3” is selected and is represented as x’F3’. The x’4B’, a decimal point,
remains unaffected. The “8” is selected and is represented as x’F8’. The “7” is selected and is
represented as x’F7’. Since the number being edited is positive, the x’60’ is filled with x’40’. The
final result would print as “ 453.87 “.

 Consider a second edit which uses the same edit word as in the previous example, but with a
different value for APK.

 EDWD DC X’4020206B2021204B202060’

 AOUT DC CL11

 APK DC PL4’-7’

Again we execute the same sequence of instructions.

 MVC AOUT,EDWD

 EDMK AOUT,APK

40 20 20 6B 20 21 20 4B 20 20 60

00 00 00

40 40 40 40 40 40 F0 4B F0 F7 60

7DAPK

EDWD

AOUT

As in every edit, the x’40’ fill character is unaffected by the edit process. The first and second
digits, both 0, are selected, and since they are leading 0’s and significance has not started, they
are filled with x’40’. The x’6B’ is also filled with x’40’ since significance has not started. The next
two digits, both 0, are selected and filled. Since the x’21’ selected a leading 0, the significance
indicator is turned on - significance starts with the next digit. This means that all other digits will
appear in a character representation, even if they are leading 0’s. All other editing symbols will
be printed as well. Unlike the previous example, register 1 is not initialized because a significant
digit was never encountered while the significance indicator was off. The fifth digit, 0, is selected
and represented as x’F0’. The x’4B’ is preserved. The next two digits, 0 and 7, are selected and
represented as x’F0’ and x’F7’. Finally, since the APK contains a negative number, the x’60’ is
preserved. The final result would print as “ 0.07-”.

 It is important to understand that ED and EDMK are equivalent instructions except that under
certain conditions, EDMK will change the contents of register 1. To be precise, EDMK sets
register 1 to the address of the first non-zero digit in the target field if the corresponding
significant digit in the source field was encountered while the significance indicator was off.
Otherwise, register 1 is unaffected. This gives rise to the common practice of initializing register
1 with the address of the byte following the significance starter (x’21’) in the target field prior to
issuing the EDMK instruction. By doing this, the programmer can be assured that register 1 is
pointing at the first significant digit in the target, regardless of the manner in which significance
was started. Consider the example below.

 MVC XOUT,EDWD SET UP EDIT WORD
 LA R1,XOUT+4 POINT AT SIG.STARTER+1

 EDMK XOUT,XPK EDIT THE DATA

 ...

 XOUT DS CL7

 EDWD DC X’402020214B2020’
 XPK DS PL3

Suppose XPK contains x’00000C’. After editing, XOUT contains “ .00”, and register 1 contains
the address of the decimal point. In this case the significance was turned on by the significance
starter.

 On the other hand, suppose XPK contains x’05643C’. After editing, XOUT contains “ 56.43”,
and register 1 contains the address of the “5” XOUT. In this case significance was started
because a non-zero digit was selected while significance was off. In both of the previous cases,
register 1 contains the address of the first significant digit. The address in register 1 could be
used to insert an edititing character in front of the first significant digit:

 MVI 0(R1),C’$’ FLOAT A DOLLAR SIGN

Examples

 Some Unrelated EDMK’s:

 APK DC PL2’123’ X‘123C’
 AOUT DS CL4

 AEDWD DC X’40202120’

 ... Result:

 MVC AOUT,AEDWD

 LA R1,AOUT+3

 ED AOUT,APK AOUT = X’40F1F2F3’ - ‘ 123’

 REGISTER 1 CONTAINS ADDRESS OF AOUT+1

 BPK DC PL2’0’ X‘000C’

 BOUT DS CL4

 BEDWD DC X’40202120’

 ... Result:

 MVC BOUT,BEDWD

 LA R1,BOUT+3

 ED BOUT,BPK BOUT = X’404040F0’ - ‘ ’

 REGISTER 1 CONTAINS ADDRESS OF BOUT+3

 CPK DC PL2’0’ X‘000C’

 COUT DS CL4

 CEDWD DC X’40212020’

 ... Result:

 MVC COUT,CEDWD

 LA R1,COUT+2

 ED COUT,CPK COUT = X’404040F0’ - ‘ 00’

 REGISTER 1 CONTAINS ADDRESS OF COUT+3

 DPK DC PL2’0’ X‘000C’

 DOUT DS CL4

 DEDWD DC X’5C202120’ ASTERISK IS USED AS A FILL CHARACTER

 ... Result:

 MVC DOUT,DEDWD

 LA R1,DOUT+3

 ED DOUT,DPK DOUT = X’5C5C5CF0’ - ‘***0’

 REGISTER 1 CONTAINS ADDRESS OF DOUT+3

 EPK DC PL2’-300’ X’300D’ NEGATIVE NUMBER

 EOUT DS CL5

 EEDWD DC X’4020212060’

 ... Result:

 MVC EOUT,EEDWD

 LA R1,EOUT+3

 ED EOUT,EPK EOUT = X’4040F3F0’ - ‘ 300-’

 REGISTER 1 CONTAINS ADDRESS OF EOUT+1

Tips

1. There are two errors that beginners make when using EDMK :

 1) The number of x’20’s and x’21’s does not match the number of decimal digits in the field
 being edited. This is a critical error. If the packed field has length “n”, the number of
 x’20’s and x’21’s is 2n - 1. For example, if you are editing a packed field of length 6, the
 edit word must contain exactly 11 x’20’s and x’21’s. A bad edit word will produce
 unpredictable output.

 2) The output field size does not match the edit word size. For example, suppose you coded
 the following,
 AEDWD DC X’402020202120’

 AOUT DS CL5

 When the edit word is moved to AOUT, the last byte of the edit word is not moved since
 the edit word is 6 bytes and the target field is 5 bytes. The effect is that we are using an
 incorrect edit word, even though the definition of the edit word was correct.

2) When editing, start with the packed field and design an edit word that matches it. Then define
the output field to match the edit word. For example, if we start with a packed field of length 3 (5
decimal digits), we could design x’402021204B2020’ as an appropriate edit word (5 x’20’s and
x’21’s). Since the edit word is 7 bytes long, we would design a 7 byte output field to hold the edit
word.
 XPK DS PL3

 XEDWD DC X’402021204B2020’

 XOUT DS CL7

 ...

 MVC XOUT,XEDWD

 LA R1,XOUT+3

 EDMK XOUT,XPK

3) Be sure to initialize R1 before issuing the EDMK instruction. R1 should contain the address of
the byte following the significance starter (x’21’).

