

Chapter Two

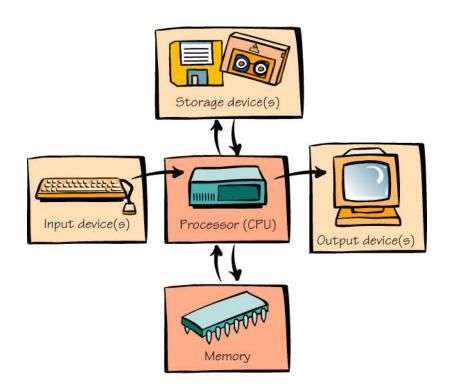
Hardware Basics: Inside the Box

After reading this chapter, you should be able to:

- Explain general terms how computers store and manipulate information.
- Describe the basic structure of a computer
- Discuss the functions and interactions of a computer system's principal internal components

After reading this chapter, you should be able to:

- Explain why a computer typically has different types of memory and storage devices
- Describe several examples of input and output devices and explain how they enhance a computer's usefulness


Chapter Outline

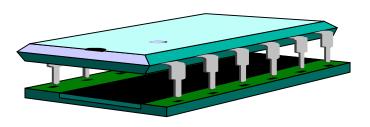
- What Computers Do
- A Bit About Bits
- The Computer's Core: CPU and Memory

What Computers Do

Four basic functions of computers include:

- Receive input
- Process information
- Produce output
- Store information

Input Devices

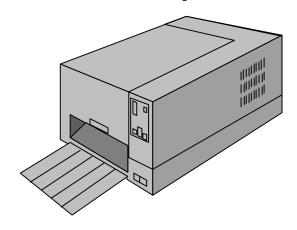

Computers accept information from the outside world.

The **keyboard** is the most common input device.

Pointing devices like the mouse also receive input.

Process Information

The processor, or **central processing unit** (CPU), processes information, and performs all the necessary arithmetic calculations. The CPU is like the "brain" of the computer.


Output Devices

Computers produce information and send it to the outside world.

A video monitor is a common output

device.

Printers also produce output.

Store Information

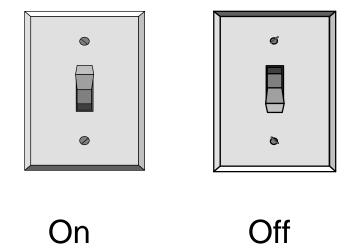
Memory and storage devices are used to store information.

Primary storage is the computer's main memory.

Secondary storage uses disks or other

media.

Primary storage


Secondary storage

A Bit About Bits

A bit (binary digit)

- is the smallest unit of information
- can have two values
 - 1 and 0.

Binary digits, or bits, can represent numbers, codes, or instructions.

Bits as Numbers

Binary number
system - a system
that denotes all
numbers and
combinations of two
digits.

The binary system uses two digits to represent the numbers 0 and 1.

	Decimal representation	Binary representation
	0	0
	1	1
%	2	10
2/2/	3	11
2/3/3/	4	100
3/3/3/3/	5	101
2010/0/0	6	110
2/2/2/2/2/2/2/	7	111
22/2/2/2/2/2/2/2/	8	1000
22/2/2/2/2/2/2/2/2/	% 9	1001
atalatatatatatat		1010
3/3/3/3/3/3/3/3/3/3/3/		1011
	12	1100
22222222222		1101
2000000000000000	14	1110
3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/		1111
	10	1111

Bits as Codes

ASCII - American
Standard Code for
Information
Interchange - most
widely used code,
represents each
character as a
unique 8-bit code.

Character	ASCII binary code
ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789	01000001 01000010 01000010 01000100 01000101 01000110 01000111 01001000 01001010 01001010 01001110 01001111 010011110 01010101
0 1 2 3 4 5 6 7 8 9	0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0

Bits as Instructions

The computer stores programs as collections of bits.

For instance, 01101010 might instruct the computer to add two numbers.

Other bit instructions might include where to find numbers stored in memory or where to store them.

Bits, Bytes, and Buzzwords

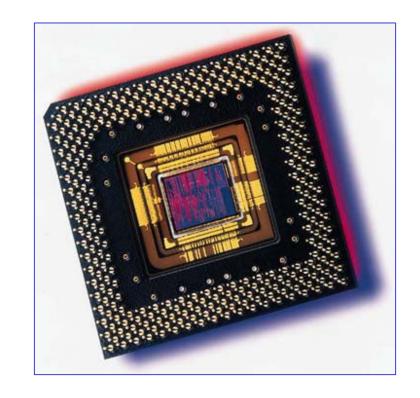
Common terms might describe file size or memory size:

Bit: smallest unit of information

Byte: a grouping of eight bits of information

K: (kilobyte); about 1,000 bytes of information - technically 1024 bytes equals 1K of storage.

Bits, Bytes, and Buzzwords


MB: (megabyte); about 1 million bytes of information

GB: (gigabyte); about 1 billion bytes of information

TB: (terabyte); about 1 million megabytes of information

The Computer's Core: The CPU and Memory

- The transformations are performed by the CPU - the central processing unit or processor.
- The microprocessor, which is a silicon chip, is located on the motherboard.

The Computer's Core: The CPU and Memory

When you purchase a computer, the selection of the CPU is a very important choice. There are two factors that are very important to computer users are:

- Compatibility
- Speed

Compatibility

Not all software is compatible with any given CPU. Each computer has a unique **instruction set** - a vocabulary of instructions the processor can execute.

New microprocessors can usually run older software, but new software is not usually compatible with old microprocessors.

Speed

The computer's speed is measured by the speed of its **internal clock** - a device to synchronize the electric pulses.

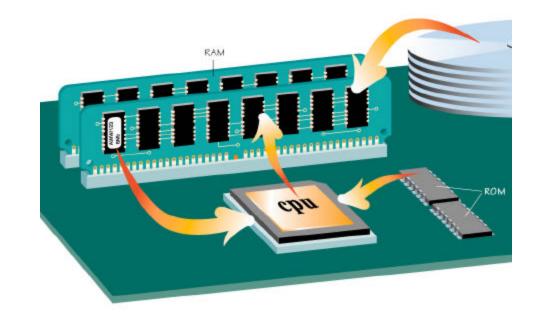
Speed is measured in units called

megahertz (mHz).

Speed

- The architecture of a computer determines its speed.
- CISC complex computer instructions set computer
- RISC reduced instruction set computer

Infel pontain seen as	Popular CPU Families and Where to Find Them			
CPU Family	Туре	Developer/Manufacturer	Where they're used	
Pentium Family	CISC	Developed and manufactured by Intel; clones by AMD, Cirrix and others	Modern IBM-compatible computers	
x86 Family (386, 486)	OSC	Developed and manufactured by Intel; clones by others	Older IBM-compatible computers	
Power PC Family	RISC	Developed by IBM, manufactured by IBM and Metorola	Modern Mocintoshes, network computers, special-purpose devices	
680x0 Femily (68000, 68020, and others)	CISC	Developed and manufactured by Motorala	Older Macintoshes, computer- controlled devices	
Alpha	RISC	Developed by Digital (now awned by Compaq), manufactured by Intel	Supercomputers, workstellions, servers	
NIPS	RISC	Developed by Silicon Graphics, manufactured by many companies	Workstations, servers, network computers, video game machines, other devices	
SPARC	RISC	Sun	Workstutions	


Primary Storage: The Computer's Memory

RAM (random access memory):

- is the most common type of primary storage, or computer memory.
- used to store program instructions and data temporarily
- unique addresses and can store in any location
- can quickly retrieve information
- will not remain if power goes off (volatile).

Primary Storage: The Computer's Memory

- ROM (read-only memory):
 - information is stored permanently on a chip.
 - contains startup instructions and other permanent data.

Buses, Ports, and Peripherals

Information travels
between
components through
groups of wires
called **buses**.

Buses, Ports, and Peripherals

Peripherals:

- are external devices for receiving input or producing output (keyboard, monitor, and mouse).
- communicate with other parts of the system.

Buses, Ports, and Peripherals

 provide attachment and communication with external devices by means of:

slots (for internal attachment)

ports (for external
 attachments)

