
Weekly Lab 3 – Interfaces and Polymorphism

Maximum Points = 10

 The purpose of this lab is to introduce the concept of interfaces and polymorphism.

1) It is often the case that two or more classes share a common set of methods. For programming
purposes we might wish to treat the objects of those classes in a similar way by invoking some of their
common routines.

For example, the Dog and Cat classes listed below agree on the void method speak. Because Dog and
Cat objects have the ability to “speak,” it is natural to think of putting both types of objects in an
ArrayList and invoking speak on every object in the list. Is this possible? Certainly we could create an
ArrayList of Dog that would hold all the Dog objects, but can we then add a Cat object to an ArrayList of
Dog?

a) Try running the main program below as it is written.
b) Run it a second time after uncommenting the line that instantiates a Cat object and tries to

add it to the ArrayList.

import java.util.*;

public class AnimalRunner

{

 public static void main(String[] args)

 {

 ArrayList<Dog> dogcatList = new ArrayList<Dog>();

 dogcatList.add(new Dog("Fred"));

 // dogcatList.add(new Cat("Wanda"));

 for (Object obj : dogcatList)

 {

 // obj.speak();

 }

 }

}

2) Our experiment to add Cat objects to an ArrayList of Dog objects failed. Perhaps we should try using

the original Java ArrayList without generics (e.g. <Dog>)?

a) Try running the code after removing the generic references <Dog> along with the Dog and Cat

classes defined above.

b) Run it a second time after uncommenting the line that invokes speak.

3) The experiment shows that we are now able to add Dog and Cat objects to the ArrayList, but there is a

compile error on the line obj.speak because obj is an Object reference variable and the class Object

doesn’t contain a speak method. We need a reference variable that can refer to Dog and Cat objects and

which also allows us to invoke speak. The solution to the problem uses interfaces.

a) First create an interface called Speakable that contains a void speak() method signature.

Be sure to modify the Dog and Cat classes to indicate that they implement the Speakable

interface. (For example, in the case of the Dog class, we will code public class Dog implements

Speakable. Be sure to make a similar change in the declaration of the Cat class.)

b) The term Speakable can be used to create Speakable references.

i) Using generics, create an ArrayList of Speakable objects in the main method.

ii) Modify the for loop so that it iterates over Speakable objects.

iii) Try adding the Dog and Cat objects and invoking the speak method on each object. Does this

work?

4) Compile and run your program.

 (Due before 11:59pm on Friday, January 28, 2011) Submit ALL your .java files containing your program
to the dropbox in WebCT.

 Grades are determined using the following scale:

 Runs correctly..…………………:___/3
 Correct output……..……………:___/2
 Design of output..………………:___/1
 Design of logic…………………:___/2
 Standards……………………….:___/1
 Documentation.………………...:___/1

Grading Rubric (Word document)

http://csc.colstate.edu/summers/NOTES/1301/Grading-Rubric-Programs.htm
http://csc.colstate.edu/summers/NOTES/1301/Grading-Rubric-Programs.doc

