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netic algorithms. A key new feature is PsodaScript, an extension to the
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constructs; thereby allowing complex meta-search techniques like the
parsimony ratchet to be easily and compactly implemented. PSODA
promises to be a valuable tool in the future development of novel phy-
logenetic techniques. This paper seeks to familiarize researchers with
PSODA and its features, in particular the internal scripting language,
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1 Introduction

Phylogenetic trees model the evolutionary relationships among species, enabling
researchers to both analyze species differences (Felsenstein, 2004) and to better un-
derstand the processes by which those differences arise (Mooers and Heard, 1997).
Phylogenetic trees represent an important research tool in many scientific areas. In
AIDS research, for example, scientists are using phylogenies to better understand
how the Human Immunodeficiency Virus (HIV) mutates in response to the human
immune system. Because HIV evolves faster than most known organisms, under-
standing its evolution will hopefully lead to improved vaccines (Rambaut et al.,
2004). Phylogenetic research is also contributing to many other areas of study,
including nucleic acids research (Eisen, 1998) and endangered species conservation
(Wolfe et al., 1998).

A major task related to phylogenetic research is that of efficiently inferring,
from molecular data, the correct phylogenetic tree for a set of organisms. One
approach to the problem is to arrange a data set into all possible phylogenies, scor-
ing each tree to find the one that most likely represents the actual evolutionary
relationships among the organisms. Unfortunately, because phylogenetic inference
is an NP-hard problem (Chor and Tuller, 2005), such an exhaustive approach is
typically unreasonable. Therefore, to infer trees from data sets with more than a
few taxa, phylogenetic inference software must rely heavily on heuristic algorithms
(Sanderson, 1990). This is significant because most realistic biological studies re-
quire data sets with at least 20 taxa (Graham and Foulds, 1982), if not hundreds
or thousands.
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Table 1 Accessibility

License Fee Open-source

PHYLIP �
POY �
PAUP* �
BioPerl �
TNT
PSODA �

A high quality phylogeny, or evolutionary tree, is important to accurately de-
termine the relationships between species. Phylogenies have been in use for over a
hundred years and software has been employed to produce better phylogenies for a
couple of decades. These applications are among the most frequently cited papers in
the field of bioinformatics with over 10,000 citations for both PHYLIP (Felsenstein,
2007) and PAUP* (Swofford, 2003) (according to scholar.google.com). Although
many people use these applications, they have not been thoroughly maintained in
the past several years. Furthermore, most existing phylogenetic reconstruction
packages either have a licensing fee and are not extendible to experiment with
new algorithms and methods or have serious performance limitations. This work
presents an open source phylogenetic search and multiple sequence alignment pack-
age that is free to use and has phylogenetic search performance comparable to
PAUP*.

PSODA (Phylogenetic Search using Open Source Data Analysis) Carroll et al.
(2007) is an open source phylogeny reconstruction application. It provides basic
and advanced phylogeny searching capabilities and a progressive multiple sequence
alignment method. It can perform phylogenetic analysis with Maximum Parsimony
and Maximum Likelihood. Additionally, it comes with a graphical user interface
(GUI) that allows for visualizing individual phylogenies as well as the progress of
a search. PSODA’s performance is comparable to existing phylogenetic programs
(see section 6). One of PSODA’s distinguishing characteristics, PsodaScript (Krein
et al., 2007), is the ability to script meta-searches with advance language constructs.
PSODA can be obtained for free from http://csl.cs.byu.edu/psoda.

This paper seeks to familiarize researchers with PSODA and its features, in
particular PsodaScript.

2 Related Work

While several phylogenetic reconstruction packages exist, they are either too
slow for analysis on medium to large data sets and/or are proprietary.

Over the past few decades, developers have produced a number of phylogenetic
inference software packages. Even a superficial summary of the many packages
is beyond the scope of this paper. We discuss only a few of the more influen-
tial packages—PHYLIP (Felsenstein, 2007), POY (Wheeler et al., 2003), PAUP*
(Swofford, 2003), and TNT (Goloboff et al., 2007) (see Table 1).

PHYLIP, an open source package, is one of the longest maintained phylogenetic
analysis applications, offering a collection of separate programs that can be used as
a toolkit in phylogenetic research. It was first released in 1980 by Joe Felsenstein
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and is one of the first programs to perform Maximum Likelihood (ML) searches.
It is an open source package that focuses on ML, but also allows for Maximum
Parsimony (MP) searches. PHYLIP’s component programs are written in C and
are relatively easy to install and use. However, it also runs much more slowly on
large data sets than other phylogenetic applications (Sanderson, 1990).

PAUP* (Phylogenetic Analysis Using Parsimony *and other methods) is be-
lieved to be the most widely used phylogenetic search program. It is both feature-
rich (analysis in both MP and ML) and robust. Unfortunately, it is proprietary
software, requires a licensing fee to use and does not perform multiple sequence
alignment.

POY, on the other hand, is free and open source software. It differs from the
other programs here in that it employs Optimization Alignment to build phyloge-
nies (Wheeler, 1996). Optimization Alignment builds a phylogeny from unaligned
data, then produces an alignment of the sequences based on that phylogeny. The
phylogeny is evaluated using the newly calculated alignment.

Another phylogenetic search package is TNT (Tree analysis using New Technol-
ogy), written by Pablo Goloboff, Steve Farris, and Kevin Nixon. Although TNT has
become a pacesetter in phylogenetic software, offering excellent search speeds (Meier
and Ali, 2005), it ultimately limits users because it is closed source. For instance,
TNT scores all trees with parsimony; users cannot score trees with likelihood, and
they cannot extend TNT to implement experimental algorithms. Another limita-
tion is that TNT does integrated alignment methods. TNT is proprietary, but as
of November 2007 when the Willi Hennig Society subsidized the project, it is free
to download (see http://www.zmuc.dk/public/phylogeny/TNT/).

3 Features

Analyzing phylogenetic trees currently requires the use of several different pro-
grams. PSODA bridges the gap and brings the many features necessary to analyze
phylogenetic trees together in one package. Some of the features PSODA provides
are discussed in this section.

3.1 Open-Source Code

PSODA uses open source code licensed under the GNU General Public Li-
cense, Version 2 (see http://www.gnu.org/licenses/old-licenses/gpl-2.0.
html). This license allows others not only to collaborate and make improvements to
the package, but also to extend it and perform algorithmic experiments with a sta-
ble code foundation. We envision many researchers finally being able to implement,
in code, concepts that they’ve envisioned, but have not implemented due to the hur-
dles of developing a fast and reliable foundation of code. Example modifications
include a different enumeration of topologies during a TBR search and integrating
both Maximum Likelihood and Maximum Parsimony into a single search algorithm
(see (Sundberg et al., 2007)). To implement the latter would require minor changes
and additions to the existing code.
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3.2 Performance

The performance of a phylogenetic search application is usually measured by the
phylogeny scores that it achieves over time. PSODA has comparable performance to
other phylogenetic search packages in terms of the trees scores obtained over time.
For a more detailed treatment of PSODA’s performance, see section 6, Results.

3.3 Models of analysis

The two main models of phylogenetic analysis are Maximum Parsimony (Camin
and Sokal, 1965) and Maximum Likelihood (Felsenstein, 1981). MP has been used
for phylogeny analysis longer than ML. It is based on the same principles as Occam’s
razor—the simplest solution is the best solution. Joe Felsenstein fathered the ML
movement when he discovered inconsistencies with MP when long branches are
present in a phylogeny. ML uses different models of evolution. PSODA allows
users to perform both Maximum Parsimony and Maximum Likelihood searches.
For ML searches, PSODA uses the GTR+Γ evolutionary model by incorporating
RAxML (Stamatakis, 2006).

3.4 Graphical User Interface

PSODA’s graphical user interface (GUI) (see Figure 1) is an important part
of making PSODA user-friendly and portable. All of the other programs used in
searching tree space have only a command-line interface, or the GUI that is available
only works on older operating systems.

There are several features offered in PSODA’s GUI in order to facilitate many of
the tasks required to run and analyze datasets. Three of the most valuable features
in the GUI are: data format conversion, a 3D visualization of the progress of the
search and an individual phylogeny viewer. Each of these features are discussed in
this section.

Data Format Conversion

Several formats currently exist for genetic and phylogeny data such as PHYLIP
(Felsenstein, 2007), Clustal (Thompson et al., 1994), MEGA (Kumar et al., 1994),
NEXUS (Maddison et al., 1997), and FASTA (Lipman and Pearson, 1985); how-
ever, none of the standard programs accept all of these formats, nor do they perform
all types of analyses common for phylogenetic tree. To do so requires using mul-
tiple programs and multiple file formats. The process of converting from one for-
mat to another can be difficult for many users, so DataConvert (David McClellan,
http://biology.byu.edu/faculty/dam83/cdm/), which is capable of converting
each file format to any other, is included in PSODA. When converting the for-
mats, DataConvert offers the option of interleaving the sequences or leaving them
discrete. Also, if there is an entire directory of files that needs to be converted,
DataConvert can convert all of those files instead of requiring the user to convert
each file individually.
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(a)

(b)

Figure 1 PSODA GUI illustrating the search results (tree scores and number of trees
over time) (in (a)) and using ATV (Zmasek and Eddy, 2001) to display a phylogeny (in
(b)).

3D Search Visualization

While tree space visualization is a current topic of research (Hillis et al., 2005),
PSODA provides a 3D graph of the progress of the search (see Figure 1). The default
graph’s axes are elapsed time, tree score and the number of trees found of the score.
The graph is updated in real-time. Such a visualization can provide insights into
the progress of the search and help a researcher gauge when to terminate a search.
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Since PSODA is open source, it is possible for others to contribute by defining new
dimensions to better map the phylogenetic tree space.

Phylogeny Viewer

To analyze a specific tree for biological accuracy it is necessary to view it. While
there are several tree viewers available, other phylogeny search applications do not
integrate a viewer into their program. To view the saved trees from a search often
requires converting to a new format specific to the tree viewer of choice. Integrated
into PSODA is ATV (A Tree Viewer) (Zmasek and Eddy, 2001). ATV is a powerful
tree viewer written in Java, and therefore provides the same level of portability
enjoyed by PSODA. Among the most useful features of ATV are its ability to view
trees with a large number of taxa, view branch lengths and zoom in and out.

3.5 Cross-platform architecture

PSODA has been carefully designed to run on the most popular operating sys-
tems. Executable binaries of PSODA for Mac OS X, Linux and Windows operating
systems are available from the PSODA website, http://csl.cs.byu.edu/psoda.
Additionally, the source code is also available for contribution and modification.

3.6 Input format

PSODA uses the NEXUS format for inputting sequences, trees and commands.
The format is familiar to many researchers, and there is a wealth of supporting
tools that exist to convert existing data and create new NEXUS files. Additionally,
PSODA allows auxiliary input beyond the NEXUS format to handle features not
present in other phylogenetic search applications. An example of this is unaligned
data. Currently, the NEXUS format does not support unaligned data (unless the
sequences are all the same length). PSODA uses unaligned data to perform a
multiple sequence alignment.

3.7 Multiple Sequence Alignment

While most phylogenetic search applications only handle previously aligned data
sets, PSODA also can perform a progressive multiple sequence alignment (Feng
and Doolittle, 1987) of unaligned data. Users can either provide a guide tree, or
PSODA produces one. A guide tree is calculated by clustering sequences using
the Neighbor-Joining algorithm (Saitou and Nei, 1987) according to their pairwise
alignment scores. PSODA traverses the tree, aligning the most closely related
sequences first (the leaves of the tree). After those sequences are aligned, it aligns
sub-alignments of sequences. This continues and results in an alignment of all
the sequences. PSODA uses the Needleman-Wunsch algorithm (Needleman and
Wunsch, 1970) to perform the alignments. Including an alignment algorithm in
a phylogenetic search application allows for interesting combinations of alignment
and phylogeny search to be efficiently combined.
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Table 2 Meta-search Capabilities

Wrappable Internal Commands Internal Scripting

PHYLIP �
POY � �
PAUP* � �
BioPerl � � �
TNT � � �
PSODA � � �

3.8 PsodaScript

PSODA has a built-in language that allows users to create phylogenetic searches
of their own design (Krein et al., 2007). A full treatment of PsodaScript is given in
the following sections.

4 PsodaScript

One of the driving purposes of PSODA is to provide a more complete frame-
work for developing meta-search algorithms. To accomplish this, PSODA has been
equipped with its own internal scripting language, PsodaScript.

4.1 Motivation

Researchers have developed a number of heuristic algorithms that perform rea-
sonably well on large data sets; nevertheless, local optima in a search space often
prevent these algorithms from finding the globally optimal solution. This problem
is exacerbated by the inability of researchers—due to the vastness of the search
space—to confidently distinguish between local and global optima.

One answer to the local optimum problem is meta-searching, which combines
various heuristic searches together into a single search algorithm (Miolanen, 2000).
In phylogenetic inference software packages, meta-searches may be constructed from
existing algorithms either via an internal scripting language or an external wrapper.
Unfortunately, wrapper applications tend to be cumbersome, often requiring con-
siderable effort to orchestrate the interaction among sub-searches. Furthermore,
having to code meta-search algorithms in a wrapper-script increases complexity
and reduces clarity. In an effort to build upon predecessor applications and provide
a solid, usable framework for developing meta-search algorithms, PSODA imple-
ments a scripting language—PsodaScript—with syntax and constructs for clearly
and concisely defining phylogenetic searches.

4.2 Existing Approaches to Phylogenetic Meta-searching

Existing packages offer varying degrees of meta-searching capabilities (see Ta-
ble 2). However, to perform advanced meta-searches most of these packages (in-
cluding PHYLIP, POY, and PAUP*) must be wrapped by an external program
or language such as DCM (Roshan et al., 2004), Perl, or shell scripting. Although
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wrapping phylogenetic software with other applications or code enables some meta-
searches, the process is unnecessarily complex.

One problem with wrapper applications and languages is that they introduce the
complexity of coordinating and converting inputs and outputs between the various
pieces of the meta-search. BioPerl, in particular, addresses this difficulty, and many
researchers use BioPerl to make needed conversions. However, because BioPerl is
based on the Perl programming language, researchers must have a Perl program-
ming environment in order to use BioPerl. Unfortunately, installing Perl and the
necessary modules can be frustrating, particularly for users with no experience in
computer systems administration. Moreover, Perl syntax can be an obstacle for
researchers who wish to write complex algorithms, but who do not have the time
to learn the finer points of a powerful, yet complex language structure.

Additionally, scripting languages generally require researchers to use syntax and
terms that are foreign to the phylogenetic research domain. POY and PAUP* have
done well to tailor their syntax to the target audience, and these packages also
facilitate some basic meta-searches. Nevertheless, both applications still require
external programming to run more advanced meta-search algorithms.

TNT implements its own internal scripting language which is capable of perform-
ing advanced meta-searches. However, TNT is closed-source, and its syntax—like
Perl’s—provides great power, but at the expense of simplicity. PsodaScript takes
the middle ground between the command languages of POY and PAUP* and the
heavy scripting languages of Perl and TNT. It is an internal scripting language with
a simplified syntax and command names from the phylogenetic domain. Therefore,
PsodaScript not only makes writing advanced meta-search algorithms possible, but
also more intuitive. Further, it frees researchers from the burdens of coordinating
and converting inputs and outputs between sub-applications and the need to setup
and maintain auxiliary applications and programming environments.

4.3 PsodaScript: Methods & Procedures

To date, researchers have developed several successful meta-searching techniques
(Nixon, 1999; Goloboff, 1999). However, without internal scripting capabilities and
more advanced language constructs, using and experimenting with these techniques
and other meta-search algorithms is awkward and limited. Our challenge is to
design and implement an internal scripting language for PSODA in a way that would
enable (even encourage) meta-search exploration, without compromising simplicity
or usability.

Compatibility with the NEXUS File Format and PAUP*’s Command Set

As is the case with the popular package PAUP*, input files for PSODA generally
follow the NEXUS file format. This format was proposed in 1997 to be an extensi-
ble format for describing systematic information (Maddison et al., 1997). PSODA
is also designed to execute PAUP* blocks, although it’s language does not yet im-
plement every PAUP* command. Before execution, the PSODA interpreter warns
the user about any unimplemented commands, references the commands by line
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Sample 1 PsodaScript is based on PAUP*’s command syntax and the NEXUS file
format

hsearch start = current swap = TBR;

number, and then skips over them during execution. As PSODA continues to be
extended, more features and algorithms will be incorporated into the application.

There are two important reasons why PsodaScript was developed on the foun-
dation of the NEXUS file format and PAUP*’s command set (see Sample 1). First,
many people are already familiar with this format and command style, making
it easier for users to begin using PsodaScript. The other motivation lies in the
simplicity of PAUP*’s syntax and commands, which seem to be well suited to phy-
logenetic researchers. Building on PAUP*’s syntax, PsodaScript is intended to
be understandable by someone with little programming experience. Where appro-
priate, PSODA uses words rather than obtuse symbols, and the more advanced
language constructs are intended to read like English statements. A person who is
familiar with PAUP* commands should be able to understand the general idea of
what a PSODA program does, even if they have had no prior exposure to it.

A Quick Introduction to PsodaScript Syntax

In keeping with PAUP*’s style, PSODA instructions are each listed as distinct
statements terminated by a semicolon. The instruction in Sample 1 tells PSODA to
run a heuristic search beginning with the current tree(s) in the tree repository and
using the TBR method to explore the search space. Even with very little exposure,
the syntax and terminology make sense.

In addition to running PAUP* commands, PsodaScript also allows users to store
values in user variables. Assignment to a variable is performed via the = operator.
For instance, the statement height = 5; assigns the value of 5 to the variable
height. If the variable does not yet exist, it is created and initialized to the value
5. To avoid unintended side effect of assigning variables, PsodaScript uses the
notion of variable scoping, which means that a variable exists within a well defined
region in the program. If a variable is created within a loop, for instance, then it
will not be visible, or accessible, outside of that loop; it is considered, therefore,
local to that loop. If a variable is created outside of all constructs and user defined
commands, then it will be visible throughout the program.

Another point to note about variables in PsodaScript is that they are loosely
typed, as in Perl or JavaScript. This means that users do not have to explicitly
declare the type of data that a variable will hold when they create it. One variable
in PsodaScript can be assigned data of any type, and when necessary, the PSODA
interpreter will attempt to perform conversions. PsodaScript variables can also be
combined with operators to form arithmetic and logical expressions.

Conditional constructs allow users to determine how a program (or meta-search)
should proceed based on the current state of the search. Sample 2(a) illustrates
the syntax for a conditional construct. In a conditional construct, the instructions
following the first true condition are executed once, after which the interpreter
skips to the end of the conditional (endif) to continue on with the program. If
none of the conditions evaluate to true, then the else component is executed. A
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Sample 2 (a) Syntax for a Conditional Construct (b) Syntax for a Loop Construct

if (condition-1)
...
elsif (condition-2) ...
elsif (condition-3) ...
else ...
endif;

while (condition) ...
endwhile;

(a) (b)

conditional statement may or may not have an else component, and it may have
zero or more elsif components.

The loop construct is written in a similar format (see Sample 2(b)). In a while
loop construct, the body is repeatedly executed as long as the condition expression
evaluates to true.

Error Checking and Handling

Given its critical impact on usability, an important effort in PsodaScript is the
development of effective error checking and handling. Because phylogenetic searches
frequently run for several days or weeks at a time, error handling should include
some degree of data recovery following a fatal scripting error. Good error checking
and handling is even more important when running meta-search algorithms, which
are more likely (due to code branching) to run longer before encountering faulty
logic. Before execution, the PSODA interpreter informs the user of fatally incorrect
syntax and gives warnings for several non-fatal errors. For fatal logic errors, which
may surface during execution, the interpreter informs the user of the error and
the need to quit. It then gives the user an opportunity to save the trees in the
repository before exiting.

User-defined Commands: Facilitating Algorithm Readability and Design

PsodaScript also supports user-defined commands for grouping program state-
ments together under a single command name. The ability to group statements is
a simple but powerful concept. Consider a large meta-search algorithm that has
the ability to perform various heuristic searches, each of which is derived from a
base search and modified via a specific configuration of parameters, weights, and so
forth. Duplicating the code for each heuristic search every time it is used leads to a
messy program block, which translates into more mistakes and decreased algorithm
readability and re-usability. In short, grouping and labeling program segments is a
simple technique that makes an algorithm much easier to understand as a whole; it
helps current and future researchers answer the question, “What is this algorithm
really doing?”
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An illustrative user-defined command in Sample 3(a), randomReweight, ran-
domly skews a given percentage of column weights—part of a technique used by
the ratchet (Nixon, 1999) to escape a local optimum. It is called as if it were a built-
in PsodaScript command. Notice that the first statement in the randomReweight
command creates two variables, range and percent, with the default values of 3 and
25 respectively. Just like any other PsodaScript commands, this command could be
called with a parameter: randomReweight percent = 20;. Listing percent = 20
as a parameter, overrides the default value of 25.

The real benefit of user-defined commands, therefore, is their ability to abstract
away substantial segments of code, which can then be executed as often as needed
via a single, parameterized command call.

5 Applications

To demonstrate the use of PsodaScript for meta-search construction, we present
here the implementation of two specific meta-search algorithms: parsimony ratchet
(section 5.1) and iterative alignment and phylogeny search (section 5.2).

5.1 Parsimony Ratchet

As discussed above, heuristic searches for optimal phylogenetic trees are often
caught in local optima and thus fail to find the global optimum. The parsimony
ratchet attempts to avoid this problem by executing a series of heuristic searches
alternating between skewed and normal weightings for tree scoring (Nixon, 1999).
For the sake of comparison, we present a ratchet that could be run by PAUP* to-
gether with a possible implementation of a ratchet search in PsodaScript (see Sam-
ple 3). Developers have created tools that facilitate using the ratchet in PAUP*
(or PSODA) by generating long sequences of commands that simulate looping and
random number generation (Sikes and Lewis, 2001). The PAUP* ratchet dramati-
cally improves search performance and can be run in PSODA; however, using the
programming constructs of PsodaScript to implement the ratchet offers a number
of advantages in addition to the efficiency gained from using the ratchet.

For instance, during the ratchet, better scoring trees are replaced by other
(perhaps worse) trees on subsequent iterations. With variables and conditional
constructs, however, PsodaScript can also track the best score found so far, and
save only those trees that achieve a new best score. Additionally, PAUP* merely
simulates a loop by running a long sequence of heuristic searches, the length of
which is ultimately finite and must be predetermined. On the other hand, with a
simple loop, PsodaScript can run indefinitely, generating new random numbers on
each iteration.

Another disadvantage to the PAUP* ratchet is the added dependence on exter-
nal software, which further obfuscates the algorithm. On the other hand, consider
the while loop in the main body of the PSODA program (see Sample 3(a)). It makes
the algorithm of the ratchet search clear. First, twenty percent of the weights are
randomly re-weighted with skewed values, and the search continues with the skewed
weights. Afterward, the weights are reset to their initial values, and the search con-
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Sample 3 (a) Implementation of the ratchet in PsodaScript. (b) Example imple-
mentation of the ratchet in PsodaScript. Note, due to space constraints, text was
omitted and only a few iterations are shown. Normally, a ratchet search includes
several iterations.

#NEXUS

BEGIN PSODA;

begin randomReweight (range=3, percent=25);

numColumns = getWeightsLength();

numToChange = numColumns * percent / 100;

j = 0;

while (j < numToChange)

column = random (max=numColumns) + 1;

newWeight = random (max=range);

weights newWeight:column;

j++;

endWhile;

end;

set (maxtrees=1, criterion=parsimony);

hsearch (start=stepwise, swap=tbr);

while (true)

randomReweight (percent=20);

hsearch (start=current, swap=tbr);

weights reset;

hsearch (start=current, swap=tbr);

print (text = "Score: ");

print (text = getBestScore() . endline);

endwhile;

END;

#NEXUS

BEGIN PAUP;

set criterion=parsimony;

set maxtrees=1 increase = no;

hsearch start=stepwise swap=TBR;

weights 2 : 7 14 17 26 27 31 34 45 50 52 54 57 60 63 64

77 86 91 92 102 103 107 115 117 121 122 124 127 131 133

134 140 142 155 156 163 173 176 183 185 187 195 197 198

202 204 209 219 221 222 225 226 230 237 238 240 241 244

248 252 254 255 258 269 276 279 283 284 291 294 295 297

309 310 315 319 321 323 325 326 342 346 349 350 351 353

354 355 359 360 363 366 370 377 378 390 393 394 398 408

412 413 418 419 423 425 426 428 429 432 450 456 467 475

479 482 484 489 492 493 497 498 500;

hsearch start=current swap=TBR;

weights 1:all;

hsearch start=current swap=TBR;

weights 2 : 1 5 17 22 26 31 34 39 44 46 58 ... 474 483;

hsearch start=current swap=TBR;

weights 1:all;

hsearch start=current swap=TBR;

weights 2 : 2 9 11 14 16 18 20 24 28 36 40 ... 488 491;

hsearch start=current swap=TBR ;

weights 1:all;

hsearch start=current swap=TBR;

weights 2 : 1 5 17 22 26 31 34 39 44 46 58 ... 485 490;

hsearch start=current swap=TBR;

weights 1:all;

hsearch start=current swap=TBR;

weights 2 : 2 3 9 20 22 24 25 26 28 30 32 ... 494 498;

hsearch start=current swap=TBR;

weights 1:all;

hsearch start=current swap=TBR;

weights 2 : 2 3 6 12 25 29 30 37 50 56 60 ... 485 495;

hsearch start=current swap=TBR;

...

(a) (b)

tinues under normal weights. This process of alternating the search between skewed
and normal weights is repeated until the user tells PSODA to stop.

A further benefit of the PsodaScript framework is the way it facilitates exper-
imentation with parameters, such as the range of random numbers used in the
weighting or the percentage of skewed weights. Additionally, researchers can use
print statements to periodically output information about the state of the search.
Performing these simple tasks without a programming language is impractical, and
as noted above, external languages introduce unnecessary complexity.

5.2 Iterative Alignment and Phylogeny Search

Phylogenetic inference frequently begins by producing a multiple sequence align-
ment (MSA) using software such as ClustalW (Thompson et al., 1994) and an initial
phylogenetic guide tree. In preparation for a phylogenetic search, MSA inserts gaps
into the sequence data to make all sequences the same length. Research has shown
that the quality of the alignment significantly impacts the success of the phylo-
genetic search (Morrison and Ellis, 1997). The software package POY performs
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Figure 2 Performance results, in terms of best parsimony score found over time, for
a parsimony search using PSODA and PAUP* on the 500 taxa seed plant rbcL data
set (Chase et al., 1993). Note: lower parsimony score is better.

a MSA for every tree searched—thereby making expensive MSA calculations on
suboptimal trees (Wheeler et al., 2006). A possibly more efficient alternative to
POY’s approach is to iterate between alignment and phylogeny searches (Gotoh,
1996; Ridge et al., 2006). In PsodaScript, this is easily implemented as a while loop
that invokes a parsimony search and alignment on the best tree found.

6 Results

PSODA performs tree searches comparable to other phylogenetic search pack-
ages. The results presented here were run at the Ira and Mary Lou Fulton Super-
computing Laboratory at Brigham Young University. Each node of the computers
used has two Dual-core Intel Xeon EM64T processors (2.6GHz) and 8 GB of mem-
ory. The data set, rcbL (Chase et al., 1993), is comprised of 500 plant seed taxa,
each with a length of 759 sites. It is one of the most studied data set in systematics.
Figure 2 illustrates the results of running a TBR search with PSODA and PAUP on
the rcbL data set. While PAUP initially has better performance (the first 20 sec-
onds), PSODA quickly catches up and surpasses PAUP. The best parsimony score
found by PAUP is 16,227 (after 1,507 seconds). PSODA finds a phylogeny with a
better (of 16,226) after only 653 seconds. Furthermore, it is interesting to note that
the best parsimony tree score published for this data set is 16,218 (Nixon, 1999),
and PSODA achieved 16,219 (after 2,033 seconds) with simpler methods than those
used elsewhere. Using a ratchet-style search implemented in PsodaScript, PSODA
also found trees with a 16,218 parsimony score.

7 Conclusion

PSODA is an open source phylogeny reconstruction package made freely avail-
able to the public. It implements traditional search algorithms for Maximum Par-
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simony and Maximum Likelihood as well as more advanced search techniques. It
also provides a user-friendly GUI, and is available for multiple operating systems.
The input format is compatible with PAUP*. Furthermore, PSODA’s performance
is comparable with PAUP*. Finally, PSODA has several features unique to itself,
such as integrated graphing visualizations, a multiple sequence alignment algorithm
and a scripting language, PsodaScript.

PsodaScript allows users to quickly and easily design meta-searches. By design-
ing meta-searches which appropriately combine various heuristics and parameter
settings, phylogenists greatly improve the practicability of using inferred phylo-
genetic trees to solve problems. The internal scripting abilities of PSODA give
researchers the flexibility to better explore and exploit the realm of phylogenetic
meta-searching while addressing several limitations of previous phylogenetic appli-
cations.
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