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Abstract: Fundamental to multiple sequence alignment algorithms is
modeling insertions and deletions (gaps). The most prevalent model
is to use gap open and gap extension penalties. While gap open and
gap extension penalties are well understood conceptually, their effects
on multiple sequence alignment, and consequently on phylogeny scores
are not as well understood. We use exhaustive phylogeny searching to
explore the effects of varying the gap open and gap extension penalties
for three nuclear ribosomal data sets. Particular attention is given to
optimal maximum likelihood and parsimony phylogeny scores for varies
alignments of a range of gap open and gap extension penalties and their
respective distribution of phylogeny scores.
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1 Introduction

The explosion in DNA sequence data has revolutionized the way scientists
perform biological and genetic analysis. By analyzing sequence data for differ-
ent species, researchers can determine which species are most closely related and
make conservation decisions based on these results [8]. Multiple sequence alignment
(MSA) is frequently the first step in determining where active regions in proteins
are located and plays a critical role in understanding the function of genes and how
they govern life. Alignment also plays a central role in sequence analysis as the
first step in comparing corresponding regions in the genomes of different organisms
(comparative genomics). Since a refined multiple sequence alignment is crucial to so
many different types of life-saving research, it is surprising that multiple sequence
alignment does not receive more attention from the research community.

Multiple sequence alignment algorithms insert gaps in order to align either DNA
or amino acid sequences to maximize similarity according to the evolutionary model
summarized in the substitution matrix [14]. Gaps correspond to an insertion or
deletion of a substring (sometimes a single residue). Gaps can occur because of
single mutations, unequal crossover in meiosis, DNA slippage in the replication
process or translocation of DNA between chromosomes.

One of the most popular algorithms for MSA is the progressive sequence align-
ment algorithm [3, 14]. In a progressive sequence alignment algorithm, the sub-
stitution matrix is used to determine the likelihood of an observed mismatch (the
mismatch may be the result of a mutation or sequencing error). The algorithm then
decides to either insert a gap or allow the mismatch to remain in the alignment. In
progressive sequence alignment algorithms, inserted gaps are never removed.

The most popular alignment program, ClustalW [14], is used in this research.
ClustalW utilizes the progressive sequence alignment algorithm (see Figure 1).
There are two main phases to progressive alignment. First, a distance matrix is
calculated from similarity scores for every possible pair of sequences. ClustalW uses
the Wilbur and Lipman algorithm [17] to calculate the distances. These similarity
scores are only very general approximations, but work as a starting point [17]. The
similarity scores are clustered together with a modified version of the Needleman-
Wunsch algorithm [11], producing a guide tree. The second phase consists of fol-
lowing the topology of the guide tree, and at every node aligning the sequences in
each of the subtrees until all sequences have been included in the alignment. The
first phase generally requires the vast majority of the time and can be skipped by
supplying a guide tree.
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Figure 1 ClustalW flowchart

Since there are several accepted methods for computing a multiple sequence
alignment, it is difficult to evaluate the accuracy of an alignment. The alignment
score is dependent on the substitution matrix and gap penalties. ClustalW provides
an alignment score for each multiple sequence alignment performed. However, since
this score is dependent on the substitution matrix and gap penalties it cannot be
used to compare different alignments of the same data set. The minimum cost for a
phylogeny inferred from a given MSA has been suggested as an unbiased measure of
the quality of the alignment [7, 16, 15, 12]. Because no better, unbiased, metric has
been commonly used, this research uses the minimum cost phylogeny to determine
alignment quality.

Although most phylogenetic search applications use a given multiple sequence
alignment as a starting point [1, 2, 6, 13], multiple sequence alignment has received
much less attention than phylogenetic search algorithms [12]. The importance of a
quality alignment for the phylogeny search must not be minimized [9, 10]. Morrison
et al. [9] has even suggested that the resulting phylogeny is affected more by the
method used for performing the multiple sequence alignment than the method used
to perform the phylogeny search itself.

1.1 Related Work

The effects of varying parameters for MSA applications was first covered by
Fitch and Smith [4] and Williams and Fitch [18]. Several researchers have looked
at the effects of parameters for both MSA and phylogenetic search algorithms.
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Table 1 Characteristics of the three ribosomal data sets used. Average length and max
length are measured in base pairs.

Data Number of Average Max
Set Gene Sequences Length Length
1 18S 12 1856.25 1998
2 28S 12 332.83 340
3 28S 12 657.083 710

1 10 18S 10 1871.6 2214
2 10 28S 10 330.8 335
3 10 28S 10 652.3 668

These sensitivity analyses have shown that differences in input parameters for MSA
have had a greater impact on the phylogeny score then varying the phylogeny search
application [9]. Other studies have focused on nodal support and nodal stability [5].

2 Data Sets

We used six data sets to study the effects of gap open and gap extension penalties
(see Table 1). These data sets cover two nuclear ribosomal genes for a wide diversity
of hexapod species and are provided by Michael Whiting, a researcher in the Biology
Department at Brigham Young University. Data sets 1 and 1 10 are 18S gene
sequences, while data sets 2, 2 10, 3 and 3 10 are 28S gene sequences. The sequences
in each data set were randomly chosen from larger data sets. Furthermore, the
data sets with 10 taxa and with 12 taxa are disjoint random sets. We limited the
number of sequences included in this study due to the intrinsic computational time
limitations of exhaustive searching.

3 Results

Varying the gap open and gap extension costs not only produces very different
alignments [9] but produces different distributions of phylogeny scores. Figures 2-
7 plot optimal phylogeny scores for gap open penalties (GOP) ranging from 1.0
to 20.0 and gap extension penalties (GEP) evenly distributed between 0 and one
half of the respective GOP. For each of the data points in each graph, we used
ClustalW to produce the alignment, and then PAUP* [13] to exhaustively generate
the phylogenies. While heuristic searches are commonly used, an exhaustive search
is necessary to ensure the optimality of the phylogeny score for an alignment. In
each of these graphs, the default parameters for ClustalW (GOP 15.0, GEP 6.66)
are labeled. Although it is expected that ClustalW’s defaults do not produce the
optimal alignment with the lowest parsimony score, it is noteworthy that these
scores are 11.0% worse (data set 3) and 106 steps (data set 1) than the best optimal
parsimony score found. Also, the plot for data set 2 clearly reveals that local minima
of optimal phylogeny scores exist. For that data set, the local minima has a GOP
of 3.0 and a GEP of 1.2. The parsimony score at that point is 380. Attempts to
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Figure 2 Optimal parsimony scores for 200 alignments of data set 1. The minimum
optimal parsimony score of 1531 has a gap open penalty of 1.0 and two gap extension
penalties of 0.4 and 0.5. ClustalW default parameters yield an optimal phylogeny score
of 1634.

 376
 378
 380
 382
 384
 386
 388
 390
 392

 0 2 4 6 8 10 12 14 16 18 20  0 1 2 3 4 5 6 7 8 9 10

 376
 378
 380
 382
 384
 386
 388
 390
 392

Parsimony Score

Most Parsimonious Tree Scores (per alignment parameters) (Data Set 2)

GOP GEP

Parsimony Score

ClustalW Defaults

Figure 3 Optimal parsimony scores for 200 alignments of data set 2. The minimum
optimal parsimony score of 376 has a gap open penalty of 8.0 and a gap extension penalty
of 3.2. ClustalW default parameters yield an optimal phylogeny score of 388.
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Figure 4 Optimal parsimony scores for 200 alignments of data set 3. The minimum
optimal parsimony score of 618 has a gap open penalty of 2.0 and a gap extension penalty
of 0.8. ClustalW default parameters yield an optimal phylogeny score of 686.

search over the GOP-GEP space need to incorporate a of hill-climbing feature to
overcome such local minima.

In addition to gap open and gap extension penalties affecting optimal phylogeny
scores, they also greatly affect the distribution of phylogeny scores. Figure 8 illus-
trate histograms of the phylogeny scores for data sets 1-3. A clear example of the
difference in phylogenies scores is exhibited by data set 3. 98% of the possible phy-
logenies with a GOP of 20.0 and a GEP of 10.0 have of parsimony score worse than
any of the phylogenies with a GOP of 2.0 and a GEP of 0.8. In general, varying the
GEP parameters shifts the histograms of parsimony scores. The shifted distribution
retains its general shape and features. For example, the histograms presented for
data set 2 each have a second hump aside from another much larger one. Adjusting
the gap parameters causes substantial change to both the optimal phylogeny score
and its distribution.

4 Conclusion

Gap open and gap extension penalties have long been used to model insertions
and deletions. We explored the effects of independently varying the gap open and
gap extension penalties for six nuclear ribosomal gene data sets. We employed
exhaustive phylogeny searching to guarantee optimal phylogeny scores. Varying
these parameters not only yields very different optimal phylogenies, but also greatly
effects the distribution of possible phylogeny scores. Furthermore, algorithms for
traversing the GOP-GEP space need to employ hill-climbing techniques to avoid
local minima.
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Figure 5 Optimal parsimony and likelihood scores for 100 alignments of 10 taxa from
data set 1 10. The minimum optimal parsimony score of 1696 has a gap open penalty of
1.0 and two gap extension penalties of 0.4 and 0.5. ClustalW default parameters yield an
optimal phylogeny score of 1816. The minimum optimal likelihood score of 7642.36024 has
a gap open penalty of 1.0 and a gap extension penalty of 0.1. ClustalW default parameters
yield an optimal phylogeny score of 8994.1097.
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Figure 6 Optimal parsimony and likelihood scores for 100 alignments of 10 taxa from
data set 2 10. The minimum optimal parsimony score of 345 has a gap open penalty of
2.0 and a gap extension penalty of 0.6. ClustalW default parameters yield an optimal
phylogeny score of 361. The minimum optimal likelihood score of 1628.00569 has a gap
open penalty of 1.0 and gap extension penalties of 0.1, 0.2 and 0.3. ClustalW default
parameters yield an optimal phylogeny score of 1905.1693.
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Figure 7 Optimal parsimony and likelihood scores for 100 alignments of 10 taxa from
data set 3 10. The minimum optimal parsimony score of 461 has a gap open penalty of
3.0 and a gap extension penalty of 0.3. ClustalW default parameters yield an optimal
phylogeny score of 528. The minimum optimal likelihood score of 2305.91598 has a gap
open penalty of 2.0 and a gap extension penalty of 0.2. ClustalW default parameters yield
an optimal phylogeny score of 2822.2870.



10 H. Carroll et al.

 3500000

3000000

2500000

2000000

1500000

1000000

500000

0
 1500  1600  1700  1800  1900  2000  2100  2200  2300

N
u

m
b

e
r 

o
f 

P
h

y
lo

g
e

n
ie

s

Parsimony Score

All Parsimony Scores (Data Set 1)

GOP 2, GEP 0.8
GOP 5, GEP 1.5

GOP 10, GEP 3.0
GOP 15, GEP 6.66
GOP 20, GEP 10.0

20000000

15000000

10000000

5000000

0
 380  400  420  440  460  480  500  520  540  560  580

N
u

m
b

e
r 

o
f 

P
h

y
lo

g
e

n
ie

s

Parsimony Score

All Parsimony Scores (Data Set 2)

GOP 2, GEP 0.8
GOP 5, GEP 1.5

GOP 10, GEP 3.0
GOP 15, GEP 6.66
GOP 20, GEP 10.0

10000000

5000000

0
 550  600  650  700  750  800  850  900

N
u

m
b

e
r 

o
f 

P
h

y
lo

g
e

n
ie

s

Parsimony Score

All Parsimony Scores (Data Set 3)

GOP 2, GEP 0.8
GOP 5, GEP 1.5

GOP 10, GEP 3.0
GOP 15, GEP 6.66
GOP 20, GEP 10.0

Figure 8 Representative histograms of all parsimony scores for various alignments
parameters for data sets 1-3.
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