Awash in a sea of data, how do scientists identify the function of a newly cloned gene? Online resources like the Basic Local Alignment Search Tool (BLAST) provide a helping hand.

Since the discovery of the genetic code, biological research has undergone a sea change in the way it is performed. Until the early twentieth century, biology focused on the processes of living organisms and almost always involved experiments in laboratories and in the field. The growth of molecular biology in the twentieth century moved research into the test tube, where biological systems could be painstakingly dissected and reassembled. Then, beginning in the 1970s, scientists began to accumulate DNA and protein sequence data at an exponential rate; in fact, researchers currently have approximately 97 billion bases sequenced and over 93 million records. Amazingly, this sequence data doubles every 18 months!

But how do investigators search through, organize, and make sense of this massive amount of data? And how can they identify the functions of newly cloned genes? Is it possible to estimate the evolutionary relationships between genes or proteins just by examining their nucleotide or amino acid sequences? The answer to this question is yes. The relationships between organisms can be teased out as different species are connected via descent from a common ancestor. Thus, sequence similarity can be helpful in inferring function and evolutionary relationships. One common way to examine a new gene is to search for similarities between newly sequenced DNA and databases of gene sequences that have already been described. By identifying a related gene or gene family with a known function, scientists can infer the function and evolutionary relationships of newly cloned genes or even whole genomes. If genes have similar sequence regions, then the genes may share similar functions.

As gene and protein sequence databases grew at the end of the twentieth century, scientists turned to computers to help analyze the abundant and ever-growing amounts of data. Today, one of the most commonly used tools to examine DNA and protein sequences is the Basic Local Alignment Search Tool, also known as BLAST (Altschul et al., 1990). BLAST is a computer algorithm that is available for use online at the National Center for Biotechnology Information (NCBI) website and many other sites. BLAST can rapidly align and compare a query DNA sequence with a database of sequences, making it a critical tool to ongoing genomic research. In fact, the initial paper describing the program, titled "Basic Local Alignment Search Tool" and published in the Journal of Molecular Biology, was the most highly cited publication of the 1990s (Taub, 2000). The parallel development of large-scale sequence projects and bioinformatic tools like BLAST has enabled scientists to study the genetic blueprint of life across many species and has helped bridge the gap between biology and computer science in the maturing field of bioinformatics.

Alignment Theory

While the computer science principles behind BLAST have been around for some time, prior to BLAST, they had not been applied to biology. Before BLAST, alignment programs used dynamic programming algorithms, such as the Needleman–Wunsch and Smith–Waterman algorithms, that required long processing times and the use of a supercomputer or parallel computer processors.
Figure 1A depicts a Needleman–Wunsch alignment of the words "PELICAN" and "COELACANTH." The search space of the alignment is shown using a Cartesian grid and is proportional to the length of the sequences being compared plus one extra row and column.

![Initialization of the alignment matrix.](image)

A Needleman–Wunsch alignment of the words "PELICAN" and "COELACANTH.

Copyright 2003 O'Reilly Media Inc. All rights reserved. Used with permission. Korf, I., Yandell, M., & Bedell, J., BLAST. ISBN: 9780596002992

Next, the alignment matrix is initialized with a zero in the upper left corner. For each letter of the word being aligned, a point is deducted so that each letter has a progressively more negative score. Why does the algorithm subtract a point? In an alignment, the diagonal is read from the upper left to the lower right, and when the analysis moves vertically or horizontally, it indicates a gap in the sequence. Thus, each time the program moves straight up or down, a gap penalty is applied that takes away points from the alignment score. Finally, a little arrow, or pointer, is added to indicate which direction to follow the alignment (Figure 1B).
In the third stage, the algorithm starts to actually build and score the alignment in a step called fill or induction. In this example, the analysis begins by aligning the C to the P and calculating a score. In Figure 1C, one point is added if two letters match, and one point is subtracted if they do not. This calculation is carried out three times, once for each square to the left (dark blue), above (green), and upper left (brown). Using a value from either the upper or left square, the final score is -2 (-1 + -1). Using the 0 score in the upper left diagonal square, the final score is -1 (0 + -1). Because -1 is the highest score, this score is jotted down in the alignment matrix, and because the upper left square was the one leading to the best score, an arrow is inserted in the box pointing toward this square (light blue, Figure 1C).
Figure 1C: Induction or filling of the alignment matrix, part I.

One point is added if two letters match, and one point is subtracted if they do not. Using a value from either the upper (green) or left (dark blue) square, the final score is -2; however, using the value from the upper left (brown) square, the final score is -1. Because this is the highest score, it is recorded in the alignment matrix along with an arrow pointing to the upper left square.

Copyright 2003 O'Reilly Media Inc. All rights reserved. Used with permission. Korf, I., Yandell, M., & Bedell, J., BLAST. ISBN: 9780596002992

This same process continues, calculating two scores for every square in the matrix (Figures 1D and 1E).
Figure 1D: Induction or filling in of the alignment matrix, part II.

The same process is carried out for the next square in the alignment. Here, using the value in upper left (brown) square yields a sum of -2, using the value in the upper (green) square yields a sum of -3, and using the value in the left (dark blue) square yields a sum of -2. Because -2 is the highest score and was initially calculated using the upper left square, -2 is recorded in the matrix along with an arrow pointing toward the brown square.

Copyright 2003 O'Reilly Media Inc. All rights reserved. Used with permission. Korf, I., Yandell, M., & Bedell, J., BLAST. ISBN: 9780596002992
Once the matrix is completed, the optimal alignment is found through a process called traceback. The traceback starts in the lower right of the matrix and follows the pointers to adjacent boxes. By definition, traceback involves determining the best scoring path through the alignment (Figure 1F).
Although this sort of dynamic programming did a complete job of comparing every single residue of one sequence to every single residue of a second sequence and kept track of how well the sequences aligned at every step, these algorithms required a considerable amount of computer memory and processing time. Computing speed was an especially important concern, because these exhaustive programs had to search databases that continued to grow at exponential rates. Moreover, most regions of the search space did not score very well and therefore probably could have been skipped during the calculation process. Finally, these programs required powerful computing hardware that was expensive, rare, and ultimately impractical for most scientists and labs.

Researcher Stephen Altschul and colleagues wanted to bypass these challenges and develop a way for databases to be searched quickly on routinely used computers. In order to increase the speed of alignment, the BLAST algorithm was designed to approximate the results of an alignment algorithm created by Smith and Waterman (1981), but to do so without comparing every residue against every other (Altschul et al., 1990). BLAST is therefore heuristic in nature, meaning it has "smart shortcuts" that allow it to run more quickly (Madden, 2005). However, in this trade-off for increased speed, the accuracy of the algorithm is slightly decreased.

The BLAST Heuristic

BLAST increases the speed of alignment by decreasing the search space or number of comparisons it makes. Instead of comparing every residue against every other, BLAST uses short "word" (w) segments to create alignment "seeds." BLAST is designed to create a word list from the query sequence with words of a specific length, as defined by the user (Figure 2).

Requiring three residues to match in order to seed an alignment means that fewer sequence regions need to be compared. Larger word sizes usually mean that there are even fewer regions to evaluate (Figure 3A versus Figure 3B). Once an alignment is seeded, BLAST extends the alignment according to a threshold (T) that is set by the user. When performing a BLAST query, the computer extends words with a neighborhood score greater than T (Figure 3C). A cutoff score (S) is used to select alignments over the cutoff, which means the sequences share significant homologies. If a hit is detected, then the algorithm checks whether w is contained within a longer aligned segment pair that has a cutoff score greater than or equal to S (Altschul et al., 1990). When an alignment score starts to decrease past a lower threshold score (X), the alignment is terminated (Figure 3C). These and many other variables can be adjusted to either increase the speed of the algorithm or emphasize its sensitivity.

Testing the BLAST Algorithm
Altschul and colleagues tested the **BLAST** algorithm on a database of randomly generated sequences, and they examined the output resulting from different w and T parameters. If T is set to be a lower threshold, then the algorithm detects more word pairs and requires a longer processing time (Altschul *et al*., 1990). Choosing the value for T was a major decision because the researchers wanted to reach a compromise between the algorithm's sensitivity and its processing time.

Next, Altschul and colleagues tested **BLAST** on a database of real sequences, and they found it was successful in quickly identifying alignments with high scores. In searching the globin gene family, for example, they found that **BLAST** identified 88 of the 89 globin alignments that scored above 80. Other gene families, including the immunoglobulins, protein kinases, and cytochrome c genes, were then examined to measure the number of alignments detected when using different T and S values. **BLAST** was also able to detect similar regions within pairs of long sequences. These tests showed that **BLAST** was fast, sensitive, and accurate as a tool for analyzing sequence alignments (Altschul *et al*., 1990).

Bringing Mathematical Rigor to Alignment

One of the most notable innovations of **BLAST** is that the program calculates the statistical significance for each sequence alignment result. This is known as the expect value (E-value) or probability value (P-value), and it is calculated for each alignment. The E-value describes how many hits you can expect to see by chance when searching a database of a certain size, whereas the P-value describes the probability that the alignment you are observing is due to chance. In general, the lower the E- or P-value is, the more likely it is that an alignment is significant. Below the common 10^{-5} score, P and E are roughly equivalent (Madden, 2005).

The addition of statistical rigor to sequence alignment has been controversial. Some researchers rely too much on significance values to include or exclude sequences despite poorly chosen parameters, while others overinterpret "insignificant" results because the results "look" right. While all scientific results are subject to interpretation, **BLAST** scores and statistics bring much-needed objectivity to sequence comparisons, and the debate about them has helped improve methods for determining significance.

The BLAST Family

Since 1990, many variants of **BLAST** have been developed, each with specialized features. Early on, the original **BLAST** was split into two adaptations: NCBI **BLAST** and Washington University **BLAST** (WU **BLAST**). Both **BLASTs** have program variations. For instance, **BLASTN** can be used to compare a nucleotide sequence with a nucleotide database; **BLASTP** can be used to compare a protein sequence with a database of protein sequences; and **BLASTX** can take a nucleotide sequence, translate it, and query it versus a protein database in one step (Gish & States, 1993). **TBLASTN** compares a protein query sequence to all six possible reading frames of a database and is often used to identify proteins in new, undescribed genomes. Finally, **TBLASTX** compares all six reading frames of a query sequence to all six reading frames of a database—an intensive algorithmic feat that can bring even modern computers to a grinding halt if not used properly.

In addition, NCBI has some of its own specialized variants of **BLAST**. For example, **MEGABLAST** is a program that can rapidly complete searches for sequences with only minor variations and can more efficiently manage queries with longer sequences (Altschul *et al*., 1994). **PSI-** and **PHI-** are
other powerful BLAST tools that allow more complex and evolutionary divergent proteins to be aligned (Altschul et al., 1997). These and other programs, as well as genomic BLAST databases, are all available on the NCBI BLAST website.

Since its creation, BLAST has become an essential bioinformatics tool for biologists. Its speed and sensitivity allow scientists to compare both nucleotide and protein sequences to single sequences and to large databases. Most importantly, BLAST has helped democratize bioinformatics analysis and make it accessible to any researcher over the Internet. It is rare to read a modern molecular biological paper that does not refer to a BLAST alignment, and this information has permitted scientists to predict the functions of genes and proteins in whole genomes, answering questions in silico that could never be answered at a bench or in the field.

References and Recommended Reading

Gish, W., & States, D. J. Identification of protein coding regions by database similarity search. Nature Genetics 3, 266–272 (1993) doi:10.1038/ng0393-266 (link to article)

Gotoh, O., & Tagashira, Y. Sequence search on a supercomputer. Nucleic Acids Research 14, 57–64 (1986)

Korf, I., Yandell, M., & Bedell, J. BLAST: An Essential Guide to the Basic Local Alignment Search Tool (O'Reilly, Sebastopol, CA, 2003)

