
 Definition Checklist for Source Statement Counts
Definition name: Date:

Originator:

Measurement unit: Physical source lines
Logical source statements

Statement type Definition Data array Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence -> 1
2 Nonexecutable
3 Declarations 2
4 Compiler directives 3
5 Comments
6 On their own lines 4
7 On lines with source code 5
8 Banners and nonblank spacers 6
9 Blank (empty) comments 7

10 Blank lines 8
11
12
How produced Definition Data array Includes Excludes

1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

Origin Definition Data array Includes Excludes
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14
Usage Definition Data array Includes Excludes

1 In or as part of the primary product
2 External to or in support of the primary product
3

Figure 3-2 Definition Checklist for Source Statement Counts

16 CMU/SEI-92-TR-20

Definition name:

Delivery Definition Data array Includes Excludes
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Functionality Definition Data array Includes Excludes
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Replications Definition Data array Includes Excludes
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Development status Definition Data array Includes Excludes
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11
Language Definition Data array Includes Excludes

List each source language on a separate line.
1
2 Job control languages
3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

Figure 3-2 Definition Checklist for Source Statement Counts, Page 2

CMU/SEI-92-TR-20 17

Definition name:
Includes Excludes

Clarifications (general) Listed elements are assigned to
1 Nulls, continues, and no-ops statement type –>
2 Empty statements (e.g., “;;” and lone semicolons on separate lines)
3 Statements that instantiate generics
4 Begin…end and {…} pairs used as executable statements
5 Begin…end and {…} pairs that delimit (sub)program bodies
6 Logical expressions used as test conditions
7 Expression evaluations used as subprogram arguments
8 End symbols that terminate executable statements
9 End symbols that terminate declarations or (sub)program bodies

10 Then, else, and otherwise symbols
11 Elseif statements
12 Keywords like procedure division, interface, and implementation
13 Labels (branching destinations) on lines by themselves
14
15
16
Clarifications (language specific)
Ada

1 End symbols that terminate declarations or (sub)program bodies
2 Block statements (e.g., begin…end)
3 With and use clauses
4 When (the keyword preceding executable statements)
5 Exception (the keyword, used as a frame header)
6 Pragmas
7
8
9

Assembly
1 Macro calls
2 Macro expansions
3
4
5
6

C and C++
1 Null statement (e.g., “;” by itself to indicate an empty body)
2 Expression statements (expressions terminated by semicolons)
3 Expressions separated by semicolons, as in a "for" statement
4 Block statements (e.g., {…} with no terminating semicolon)
5 “{”, “}”, or “};” on a line by itself when part of a declaration
6 “{” or “}” on line by itself when part of an executable statement
7 Conditionally compiled statements (#if, #ifdef, #ifndef)
8 Preprocessor statements other than #if, #ifdef, and #ifndef
9

10
11
12

Figure 3-2 Definition Checklist for Source Statement Counts, Page 3

18 CMU/SEI-92-TR-20

Definition name:
Includes Excludes

CMS-2 Listed elements are assigned to
1 Keywords like SYS-PROC and SYS-DD statement type –>
2
3
4
5
6
7
8
9

COBOL
1 “PROCEDURE DIVISION”, “END DECLARATIVES”, etc.
2
3
4
5
6
7
8
9

FORTRAN
1 END statements
2 Format statements
3 Entry statements
4
5
6
7
8

JOVIAL
1
2
3
4
5
6
7
8

Pascal
1 Executable statements not terminated by semicolons
2 Keywords like INTERFACE and IMPLEMENTATION
3 FORWARD declarations
4
5
6
7
8
9

Figure 3-2 Definition Checklist for Source Statement Counts, Page 4

CMU/SEI-92-TR-20 19

Definition name:
Includes Excludes

Listed elements are assigned to
1 statement type –>
2
3
4
5
6
7
8
9

10
11
12

Summary of Statement Types
Executable statements

Executable statements cause runtime actions. They may be simple statements such as
assignments, goto’s, procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls,
no-ops, empty statements, and FORTRAN’s END. Or they may be structured or compound
statements, such as conditional statements, repetitive statements, and “with” statements.
Languages like Ada, C, C++, and Pascal have block statements [begin…end and {…}] that are
classified as executable when used where other executable statements would be permitted. C
and C++ define expressions as executable statements when they terminate with a semicolon,
and C++ has a <declaration> statement that is executable.

Declarations
Declarations are nonexecutable program elements that affect an assembler’s or compiler’s
interpretation of other program elements. They are used to name, define, and initialize; to
specify internal and external interfaces; to assign ranges for bounds checking; and to identify
and bound modules and sections of code. Examples include declarations of names, numbers,
constants, objects, types, subtypes, programs, subprograms, tasks, exceptions, packages,
generics, macros, and deferred constants. Declarations also include renaming declarations, use
clauses, and declarations that instantiate generics. Mandatory begin…end and {…} symbols that
delimit bodies of programs and subprograms are integral parts of program and subprogram
declarations. Language superstructure elements that establish boundaries for different sections
of source code are also declarations. Examples include terms such as PROCEDURE DIVISION,
DATA DIVISION, DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION,
SYS-PROC, and SYS-DD. Declarations, in general, are never required by language
specifications to initiate runtime actions, although some languages permit compilers to
implement them that way.

Compiler Directives
Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems)
to perform special actions. Some, such as Ada’s pragma and COBOL’s COPY, REPLACE, and
USE, are integral parts of the source language. In other languages like C and C++, special
symbols like # are used along with standardized keywords to direct preprocessor or compiler
actions. Still other languages rely on nonstandardized methods supplied by compiler vendors.
In these languages, directives are often designated by special symbols such as #, $, and {$}.

Figure 3-2 Definition Checklist for Source Statement Counts, Page 5

20 CMU/SEI-92-TR-20

