The Enhanced Entity Relationship (EER) Model:

The EER is achieved by incorporation of a semantic data modeling concepts into the conceptual ER Model.
These semantic concepts are:
1. Object oriented concepts
= Superclass & subclass relationship
= Attribute & relationships inheritance
2. The concept of specialization => Looking for the real world from different point of views
3. The concept of categories => Generation of a class which represents the union of entities of other classes.

Features of the superclass / subclass relationship concept on EER:

. An entity in a subclass is related via the key attribute to its superclass entity.

. An entity cannot exist in a DB by being a member of a subclass unless it is a member in superclass.

. An entity may be a member in multiple subclasses, but it is not necessary that every entity in a superclass is
a member in a subclass.

. An entity that is a member of a subclass inherits all the attributes of its superclass and inherits its
relationships as well.

. A member entity of the subclass represents the same real-world entity in the related superclass but in a
distinct specific role.

Constraint and Characteristics of Specialization:

Definition Constraints:

a. Predicate defined specialization: The process of defining a condition to determine exactly the entities that
will become members of each subclass by placing a condition on the value of some attribute of the
superclass, which is called the defining attribute of the related subclass.

User defined specialization: When we do not have any condition to determine membership in a subclass
hence membership is specified individually for each entity by the user and not by any condition that can be
evaluated automatically.

Disjoints Constraints:
a. Disjoint specialization: An entity can be a member of at most one subclass of a specialization.
b. Overlapped specialization: An entity can be a member in any number of subclasses of specialization

| EMPLOYEE l

Job_type

‘Secretary’

\

Tgrad
@ MANUFACTURED_PART PURCHASED_PART
| SECRETARY | [TECHNICIAN] [ENGINEER |

Disjoint Specialization

Overlapped specialization:

Participation Constraints:

a. Total participation specialization: Specifies that every entity in a superclass must be a member of at least
one subclass in the specialization. Shown with a double line.

b. Partial participation specialization: Allows an entity in a superclass not to belong to any of its subclasses in the
specialization. Shown with a single line.

Specialization Hierarchies and Lattices:
1. Specialization Hierarchy (Tree Inheritance): The constraint that every subclass participates as a subclass in

only subclass/class relationship.
2. Specialization Lattice (Multiple Inheritance): The constraint that a subclass can be a subclass in more than

one class/subclass relation.

=WPLOYEE |

)

<N

SECRETARY || TECHNICIAN || ENGINEER [h-AANAGER | HOURLY_EMPLOYEE
\\ | SALARIED_EMPLOYEE |

ENGINEERING MANAGER]

® |n specialization with lattice or hierarchy inheritance, a subclass inherits the attributes not only of its
direct superclass but also of all its predecessor superclasses all the way to the root of the hierarchy or
lattice.
Leaf Node Class: it is a class that has no subclasses of its own.
Shared Subclass: it is a subclass with more than one superclass and its entities represent a subset of the
intersection of the entities of its superclasses. This means that an entity of the shared subclass must
exist as an entity in all its superclasses. For the example above, the shared subclass
ENGINEERING_MANAGEER means that an engineering manager must be an engineer, manager, and
salaried_employee.

The concept of Category:

Category is a union type represented by a subclass that contains a collection of real-world entities (objects) which
are a subset of the union of entity types. A category member must exist in at least one of its super classes.

(Bname) @;?d'??%D

R
<}ancr license r:ng/

J

P P o—— T
Qame) | Chddress) | (Coame) Caddress)

M ’\i—:_tlcn_,or"regul;éb
(Tf’urchase, date)

N | \Lcenqe g‘ate no D

—

[REGISTERED_VEHICLE |

EER-to-Relational Mapping:

Here we are going to add further step to the ER-to-Relational mapping algorithm (6 Steps) to handle the mapping
of specialization. This step will have 4-main options and conditions under which we can determine the suitable
option. We use Attrs(R) to denote the attributes of relation R and PK(R) to denote the primary key of R.

Step 7: Options for mapping Specialization:
Convert each specialization with m subclasses {S1, S2, ..., Sm} and superclass C, where the attributes of C
are {k,al,...,an} and K is the primary key, into table schemas using one of the following option.

A. Option 7A Multiple relations_Superclass and Subclasses:-

Create a table L for C with attributes (L)= {k,au,...,an} and PK(L)=k. Create a relation Li for each subclass
Si, 1 <i<m, with the attributes(Li)= {k} U {attributes of Si} and PK (Li)=k. This option works for any
specialization (total or partial, disjoint or overlapping).

. Option 7B Multiple relations-Subclass relation Only:-
Create a table L for each subclass Si, 1 <i<m with the Attributes (Li) = {attributes of Si} U {k, a, ...,
an } and PK(Li) = k. This option only works for a specialization whose subclasses are total (Why?). If
the specialization is overlapping; an entity may be duplicated in several relations. (If the specialization
is disjoint & total it will be optimal mapping).

. Option 7C Single relation with one type Attribute:
Create a single table L with attributes (L) = {k, a1, ..., an} U {attributes of S1} U...U {attributes of Sm}
U {t} and PK(L)=k. The attribute t is called a type (or discriminating) attribute that indicates the subclass
to which each tuple belongs, if any. This Option works only for a specialization whose subclasses are
disjoint and has the potential for generating many Null values if many specific attributes exist in a
subclass.

. Option 7D: Single relation with multiple type attributes:
Create a single table schema L with Attributes(L) ={k,au,...,an} U { attributes of S;} U...U
{attributes of Sm} U {t1,t2,...,tm} and PK(L) = k.

Each ti, 1 <i<m, is a Boolean type attribute indicating whether a tuple belongs to subclass Si .

PERSOMN

P
I\En_ar_ne/ "E"‘Edfis_/

| Ssn |Driver_|i-:ense_nu::-| Mame | Address | Owmner_id |

 Driver license na™
\E[lier__hcei &no > BANK

] T — e T -
-(‘_l_la_m?(' Address (Cname) (Caddress) | Bname | Baddress | lewner_ldl

.. -

\ﬂ o COMPANY

|Cname | Caddress | Owner_idl

OWNER

S
gl — = Chwner_id
(_Lien_or_regular) =

-— -

REGISTERED _VEHICLE

:?L;chase_a;{_;?') - .
—_— | Vehicle id | License_plate_numberl

(:Li;en se_EIate__n_ax‘i [+
_ B CAR

|"-"ehic:|8 idl Cstyle | Cmake | Cmodel | Cyear |

| REGISTERED_VEHICLE |

T
|

TRUCK |
| '\l’ehicle_idl Tmake | Tmodel | Tonnage | Tyear |

— N T
(Vehicle_id") WY (Vehicle_id
— N/ //” "L\\ \-.__—__----)___

s I P T
Cstyle) o Tonnage
(Lstyle) S P nnage)

—— . / - ——
Gri> L] TG -t owNS

| Owner_id | ‘u’ehic|e_id| F'urchase_datel Lien_-::ur_regularl

> GyearD

S P
-__(_Zmodel____,- -___Tmodel_:)

