
Prepared	by	Suk	Jin	Lee

Radix Sort
� How	did	IBM	get	rich	originally?

� Answer:	punched	card	readers	for	census	tabulation	in	
early	1900’s.

� In	particular,	a	card	sorter	that	could	sort	cards	into	
different	bins
� Each	column	can	be	punched	in	12 places
� 10 places	for	decimal	digits	and	2 places	for	nonnumeric	char

� Problem:	only	one	column	can	be	sorted	on	at	a	time

Radix Sort
� Based	on	examining	digits	in	some	base-b numeric	
representation	of	items	(or	keys)

� Key	idea:	Sort	least signifiant	digit	first
� Processes	digits	from	right	to	left
� Used	in	early	punched-card	sorting	machines

� RADIX-SORT(A,	d)
for	i =	1 to	d
use	a	stable	sort	to	sort	array	A	on	digit	i

Operation of Radix sort
64, 8, 216, 11, 512, 27, 729, 199, 550, 343, 125, 93, 666

064, 008, 216, 011, 512, 027, 729, 199, 550, 343, 125, 093, 666

Write	them	all	with	three	digits,	padding	with	0s

Distribute	them	into	10 bits	labeled	0, 1,…, 9

550 011 512
093
343 064 125

666
216 027 008

199
729

0 1 2 3 4 5 6 7 8 9

Collect	them	together	from	left	to	right	(®),
bottom	to	top	()

550, 011, 512, 343, 093, 064, 125, 216, 666, 027, 008, 729, 199

Operation of Radix sort
550, 011, 512, 343, 093, 064, 125, 216, 666, 027, 008, 729, 199

Distribute	them	again,	using	the	second	digit:

008

216
512
011

729
027
125 343 550

666
064

199
093

0 1 2 3 4 5 6 7 8 9

Distribute	them,	using	the	leftmost	digit:
093
064
027
011
008

199
125 216 343

550
512 666 729

0 1 2 3 4 5 6 7 8 9

Collect	them	together	(®,)
008, 011, 512, 216, 125, 027, 729, 343, 550, 064, 666, 093, 199

008, 011, 027, 064, 093, 125, 199, 216, 343, 512, 550, 666, 729

Collecting	them	produces	the	sorted	list:

Correctness of Radix sort
� Induction	on	digit	position

� Assume	that	lower-order	digits	1, 2,…, i – 1 are	sorted
� Show	that	sorting	next	digit	i leaves	array	correctly	
sorted
� If	two	digits	at	position	i are	different,	ordering	numbers	by	
that	digit	is	correct	(lower-order	digits	irrelevant)

� If	two	digits	are	the	same,	numbers	are	already	sorted	on	the	
lower-order	digits.	The	numbers	stay	in	the	right	order

Analysis
� Counting	sort

� Sort	n numbers	on	digits	that	range	from	0,…,	k
� Time:	O(n +	k)

� Assume	that	we	use	counting	sort	as	the	intermediate	
sort
� Q(n +	k)	per	pass	(digits	in	range	0,…,	k)
� d passes
� Q(d(n	+	k))	total
� If	k =	O(n),	time	=	Q(dn)
� When	d is	constant	and	k =	O(n),	,	takes	Q(n)

Radix Sort
� In	general,	radix	sort	based	on	counting	sort	is

� Fast
� Asymptotically	fast	(i.e.,	O(n))
� Simple to	code
� A	good	choice
� Doesn’t	sort	in	place

Prepared	by	Suk	Jin	Lee

Bucket Sort
� Assumes	the	input	is	generated	by	a	random	process	
that	distributes	elements	uniformly	over	[0, 1).

� Idea
� Divide	[0, 1)	into	n equal-size	buckets
� Distribute	the	n input	values	into	the	buckets
� Sort	each	bucket
� Then	go	through	buckets	in	order,	listing	elements	in	
each	one

Input:	A[1,…,	n],	where	0 £ A[i]	<	1 for	all	i
Auxiliary	array:	B[0,…,	n – 1]	of	linked	lists,	each	list	initially	empty

Bucket Sort
� BUCKET-SORT(A)

1. n =	A.length
2. Let	B[0,…,	n – 1]	be	a	new	array
3. for i =	0 to	n – 1
4. make	B[i]	an	empty	list
5. for i =	1 to	n
6. insert	A[i]	into	list	B[ë[n×A[i]û]
7. for i =	0 to	n – 1
8. sort	list	B[i]	with	insertion	sort
9. Concatenate	the	lists	B[0],	B[1],…,	B[n – 1]	together	in	order

Bucket Sort
� BUCKET-SORT(A)

1. n =	A.length
2. Let	B[0,…,	n – 1]	be	a	new	array
3. for i =	0 to	n – 1
4. make	B[i]	an	empty	list
5. for i =	1 to	n
6. insert	A[i]	into	list	B[ë[n×A[i]û]
7. for i =	0 to	n – 1
8. sort	list	B[i]	with	insertion	sort
9. Concatenate	the	lists	B[0],	B[1],…,	B[n – 1]	together	in	order

If	A[i]	and	A[j]	go	into	the	same	
bucket,	then	the	for loop	of	lines	7	– 8	
puts	them	into	the	proper	order.

If	A[i]	and	A[j]	go	into	different	buckets,	then	
line	9	puts	them	into	the	proper	order.

Operation of Bucket-Sort
A

1 .78
2 .17
3 .39
4 .26
5 .72
6 .94
7 .21
8 .12
9 .23

10 .68

B
0 /
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /

Input	array:	A

B[ë10×A[1]û]
= B[ë7.8û]
= B[7]

Operation of Bucket-Sort
A

1 .78
2 .17
3 .39
4 .26
5 .72
6 .94
7 .21
8 .12
9 .23

10 .68

B
0 /
1 /
2 /
3 /
4 /
5 /
6 /
7
8 /
9 /

Input	array:	A

B[ë10×A[2]û]
= B[ë1.7û]
= B[1]

.78 /

Operation of Bucket-Sort
A

1 .78
2 .17
3 .39
4 .26
5 .72
6 .94
7 .21
8 .12
9 .23

10 .68

B
0 /
1
2 /
3 /
4 /
5 /
6 /
7
8 /
9 /

Input	array:	A

B[ë10×A[3]û]
= B[ë3.9û]
= B[3]

.78 /

.17 /

Operation of Bucket-Sort
A

1 .78
2 .17
3 .39
4 .26
5 .72
6 .94
7 .21
8 .12
9 .23

10 .68

B
0 /
1
2 /
3
4 /
5 /
6 /
7
8 /
9 /

Input	array:	A

B[ë10×A[4]û]
= B[ë2.6û]
= B[2]

.78 /

.17 /

.39 /

Operation of Bucket-Sort
A

1 .78
2 .17
3 .39
4 .26
5 .72
6 .94
7 .21
8 .12
9 .23

10 .68

B
0 /
1
2
3
4 /
5 /
6 /
7
8 /
9 /

Input	array:	A

B[ë10×A[5]û]
= B[ë7.2û]
= B[7]

.78 /

.17 /

.39 /

.26 /

Operation of Bucket-Sort
A

1 .78
2 .17
3 .39
4 .26
5 .72
6 .94
7 .21
8 .12
9 .23

10 .68

B
0 /
1
2
3
4 /
5 /
6 /
7
8 /
9 /

Input	array:	A

B[ë10×A[6]û]
= B[ë9.4û]
= B[9]

.78

.17 /

.39 /

.26 /

.72 /

Operation of Bucket-Sort
A

1 .78
2 .17
3 .39
4 .26
5 .72
6 .94
7 .21
8 .12
9 .23

10 .68

B
0 /
1
2
3
4 /
5 /
6 /
7
8 /
9

Input	array:	A

B[ë10×A[7]û]
= B[ë2.1û]
= B[2] .17 /

.39 /

.26 /

.94 /

.78 .72 /

Operation of Bucket-Sort
A

1 .78
2 .17
3 .39
4 .26
5 .72
6 .94
7 .21
8 .12
9 .23

10 .68

B
0 /
1
2
3
4 /
5 /
6 /
7
8 /
9

Input	array:	A

B[ë10×A[8]û]
= B[ë1.2û]
= B[1] .17 /

.39 /

.26

.94 /

.21 /

.78 .72 /

Operation of Bucket-Sort
A

1 .78
2 .17
3 .39
4 .26
5 .72
6 .94
7 .21
8 .12
9 .23

10 .68

B
0 /
1
2
3
4 /
5 /
6 /
7
8 /
9

Input	array:	A

B[ë10×A[9]û]
= B[ë2.3û]
= B[2]

.39 /

.94 /

.17 .12 /

.78 .72 /

.26 .21 /

Operation of Bucket-Sort
A

1 .78
2 .17
3 .39
4 .26
5 .72
6 .94
7 .21
8 .12
9 .23

10 .68

B
0 /
1
2
3
4 /
5 /
6 /
7
8 /
9

Input	array:	A

B[ë10×A[10]û]
= B[ë6.8û]
= B[6]

.39 /

.94 /

.23 /

.78 .72 /

.26 .21 /

.17 .12 /

Operation of Bucket-Sort
A

1 .78
2 .17
3 .39
4 .26
5 .72
6 .94
7 .21
8 .12
9 .23

10 .68

B
0 /
1
2
3
4 /
5 /
6
7
8 /
9

.39 /

.68 /

.94 /

Input	array:	A

.78 .72 /

.23 /.26 .21 /

.17 .12 /

Operation of Bucket-Sort
A

1 .78
2 .17
3 .39
4 .26
5 .72
6 .94
7 .21
8 .12
9 .23

10 .68

B
0 /
1
2
3
4 /
5 /
6
7
8 /
9

.12 .17 /

.21 .23 .26 /

.39 /

.68 /

.72 .78 /

.94 /

Input	array:	A Sort	list	B[i]	with	insertion	sort

Correctness
� Consider	A[i],	A[j].	

� Assume	without	loss	of	generality	that	A[i]	£ A[j].
� Then	ën×A[i]û £ ën×A[j]û
� So	A[i]	is	placed	into	the	same	bucket	as	A[j]	or	into	a	
bucket	with	a	lower	index
� If	same	bucket,	insertion	sort	fixes	up.
� If	earlier	bucket,	concatenation	of	lists	fixes	up

Analysis
� Analysis

� Relies	on	no	bucket	getting	too	many	values
� All	lines	of	algorithm	except	insertion	sorting	take	Q(n)	
altogether

� Intuitively,	if	each	bucket	gets	a	constant	number	of	
elements,	it	takes	O(1)	time	to	sort	each	bucket
Þ O(n)	sort	time	for	all	buckets

� We	“expect”	each	bucket	to	have	few	elements,	since	the	
average	is	1 element	per	bucket

� But	we	need	to	do	a	careful	analysis

Analysis
� Define	a	random	variable:

ni =	the	number	of	elements	placed	in	bucket	B[i]
� Because	insertion	sort	runs	in	quadratic	time,	bucket	
sort	time	is

å
-

=

O+Q=
1

0

2)()()(
n

i
innnT

Analysis
� Take	expectation	of	both	sides:

[] ú
û

ù
ê
ë

é
O+Q= å

-

=

1

0

2)()()(
n

i
innEnTE

[]å
-

=

O+Q=
1

0

2)()(
n

i
inEn

[]()å
-

=

O+Q=
1

0

2)(
n

i
inEn

(linearity	of	expectation)

(E[aX]	=	aE[X])

Analysis
� Claim

E[ni
2]	=	2 – (1/n)	for	i =	0,…,	n – 1

� Proof	of	claim
Define	indicator	random	variables:
� Xij =	I {A[j]	falls	in	bucket	i}
� Pr{A[j]	falls	in	bucket	i}		=	1/n
� å

=

=
n

j
iji Xn

0

Analysis
� Claim

E[ni
2]	=	2 – (1/n)	for	i =	0,…,	n – 1

� Proof	of	claim
To	compute	E[ni

2],	we	expand	the	square	and	regroup	term

� [] ú
û

ù
ê
ë

é
+=

ú
ú
û

ù

ê
ê
ë

é
÷÷
ø

ö
çç
è

æ
= å ååå

-

= +===

1

1 11

2

2

1

2 2
n

j

n

jk
ikij

n

j
ij

n

j
iji XXXEXEnE

[] []å åå
-

= +==

+=
1

1 11

2 2
n

j

n

jk
ikij

n

j
ij XXEXE

Analysis
� Claim

E[ni
2]	=	2 – (1/n)	for	i =	0,…,	n – 1

� Proof	of	claim

=	02×Pr{A[j]	doesn’t	fall	in	bucket	i}	+	12×Pr{A[j]	fall	in	bucket	i}

=	

=	

[]2ijXE

nn
11110 ×+÷

ø
ö

ç
è
æ -×

n
1

Analysis
� Claim

E[ni
2]	=	2 – (1/n)	for	i =	0,…,	n – 1

� Proof	of	claim

for	j ¹ k:	since	j ¹ k,	Xij and	Xik are	independent	random	
variables
[]ikij XXE

[] [] []ikijikij XEXEXXE =Þ

2
111
nnn

=×=

Analysis
� Claim

E[ni
2]	=	2 – (1/n)	for	i =	0,…,	n – 1

� Proof	of	claim

Substituting	these	two	expected	values	in	 [] []å åå
-

= +==

+
1

1 11

2 2
n

j

n

jk
ikij

n

j
ij XXEXE

[] å åå
££

¹
££=

+=
nj

jk
nk

n

j
i nn
nE

1 1
2

1

2 11

2
1)1(1
n

nn
n

n ×-+×=

nn
n 12)1(1 -=
-

+=

Analysis
� Therefore:

� With	bucket	sort,	if	the	input	isn’t	drawn	from	a	uniform	
distribution	on	[0,	1),	all	bets	are	off	(performance	wise,	
but	the	algorithm	is	still	correct)

[] []()å
-

=

O+Q=
1

0

2)()(
n

i
inEnnTE

()å
-

=

-O+Q=
1

0
/12)(

n

i
nn

()nn O+Q=)(

)(nQ=

Quiz
� Using	the	previous	figure	model,	illustrate	the	
operation	of	BUCKET-SORT on	the	array	
A =	á.79,	.13,	.16,	.64,	.39,	.20,	.89,	.53,	.71,	.42ñ

Quiz
� Explain	why	the	worst-case	running	time	for	bucket	
sort	is	Q(n2)

Quiz
� What	is	the	worst-case	running	time	if	the	algorithm	
use	merge	sort,	instead	of	insertion	sort	when	sorting	
the	buckets?

