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Overview
� Quicksort

� Sorts	“in	place”	
� Sorts	O(n lg n)	in	the	average	case
� Sorts	O(n2)	in	the	worst	case

� But	in	practice,	it’s	quick
� And	the	worst	case	doesn’t	happen	often
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Quicksort
� Quicksort

� Uses	a	Divide	and	conquer	strategy
� Sorts	“in	place”	(cf.	Mergesort	needs	extra	space)
� Very	practical	(with	tuning)
� The	original	problem	partitioned	into	simpler	sub-
problems

� Each	sub	problem	considered	independently
� Unlike	merge	sort,	no	combining	step:	two	subarrays	
form	an	already-sorted	array
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Quicksort
� Divide	and	conquer

� Divide:	partition	the	array	A[p . . r] into	two	subarrays	
A[p . . q – 1]  and	A[q + 1 . . r] such	that	
each	element	of	A[p . . q – 1] £ A[q] £ A[q + 1 . . r]

� Conquer:	sort	the	two	subarrays	A[p . . q – 1] and	A[q + 
1 . . r] by	recursive	calls	to	quicksort

� Combine:	subarrays	already	sorted.	No	work	needed
QUICKSORT(A, p, r)
1. if p < r
2. q = PARTITION(A, p, r)
3. QUICKSORT(A, p, q – 1)
4. QUICKSORT(A, q + 1, r)

Initial	call	is	
QUICKSORT(A,	1,	n)
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Partition
� Clearly,	all	the	action	takes	place	in	the	PARTITION()	
function
� Rearrange	the	subarray	in	place
� End	result:

� Two	subarrays
� All	values	in	first	subarray	£ all	values	in	second
� Returns	the	index	of	the	“pivot”	element	separating	the	two	
subarrays
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Partition
� Partition	procedure

PARTITION(A, p, r)
1. x = A[r] // select the last element in A[] as the pivot
2. i = p – 1
3. for j = p to r – 1
4. if A[j] £ x
5. i = i + 1
6. exchange A[i] with A[j]
7. exchange A[i + 1] with A[r]
8. return i + 1
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Partition
� Partition	procedure

PARTITION(A, p, r)
1. x = A[r] // select the last element in A[] as the pivot
2. i = p – 1
3. for j = p to r – 1
4. if A[j] £ x
5. i = i + 1
6. exchange A[i] with A[j]
7. exchange A[i + 1] with A[r]
8. return i + 1

What is the running time of
PARTITION()?
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Partition
� Partition	procedure

PARTITION(A, p, r)
1. x = A[r] // select the last element in A[] as the pivot
2. i = p – 1
3. for j = p to r – 1
4. if A[j] £ x
5. i = i + 1
6. exchange A[i] with A[j]
7. exchange A[i + 1] with A[r]
8. return i + 1

What is the running time of
PARTITION()?
PARTITION() runs in Q(n)
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Quicksort
� Operation	of	Partition

i p j r

2 8 7 1 3 5 6 4
A[j] = 2 £ Pivot 4 = A[r]. i = i + 1 
then exchange A[i] with A[j]

p i j r

2 8 7 1 3 5 6 4 A[j] > Pivot 4, no increase of i

p i j r

2 8 7 1 3 5 6 4 A[j] > Pivot 4, no increase of i
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Quicksort
� Operation	of	Partition

p i j r

2 8 7 1 3 5 6 4
A[j] £ Pivot 4.  i = i + 1 then 
exchange A[i] with A[j]

p i j r

2 1 7 8 3 5 6 4
A[j] £ Pivot 4.  i = i + 1 then 
exchange A[i] with A[j]

p i j r

2 1 3 8 7 5 6 4 A[j] > Pivot 4, no increase of i

10



Quicksort
� Operation	of	Partition

p i j r

2 1 3 8 7 5 6 4 A[j] > Pivot 4, no increase of i

p i r

2 1 3 8 7 5 6 4
j > r – 1, escape the Loop
Exchange A[i + 1] with A[r]

p i r

2 1 3 4 7 5 6 8 The pivot lies between the two 
partitions
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Quicksort
� Four	regions	maintained	by	the	procedure	PARTITION

on	a	subarray	A[p …	r]

p i j r

x

£ x ³ x unrestricted

The	running	time	of	PARTITION on	subarray	A[p . . r] is	Q(n)
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Quiz 1
� Using	the	previous	figure	model,	illustrate	the	
operation	of	PARTITION on	the	array
A =	á13,	19,	9,	5,	12,	8,	7,	4,	21,	2,	6,	11ñ
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Quicksort Analysis
� What	will	be	the	worst	case	for	the	algorithm?

� Partition	is	always	unbalanced
� What	will	be	the	best	case	for	the	algorithm?

� Partition	is	perfectly	balanced
� Which	is	more	likely?

� The	latter
� Will	any	particular	input	elicit	the	worst	case?

� Yes:	Already-sorted	input
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Worst-case partitioning
� Worst-case	partitioning

� Produces	one	subproblem	with	n – 1 elements	and	one	
with	0 elements

T(n) = T(n – 1) + T(0) + Q(n) // Q(n): partitioning cost

� Partitioning	costs	Q(n)
T(n)

T(0) T(n – 1)

T(0) T(n – 2)

T(0) ...

T(0)
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� Worst-case	partitioning
� Produces	one	subproblem	with	n – 1 elements	and	one	
with	0 elements

T(n) = T(n – 1) + T(0) + Q(n) // Q(n): partitioning cost
= T(n – 1) + Q(n) // T(0) = Q(1)
= T(n – 2) + Q(n) + Q(n) = T(n – 2) + 2×Q(n)
……
= T(n – k) + Q(n) + (k – 1)×Q(n) = T(n – k) + k×Q(n)
= Q(n2)

Worst-case partitioning
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� Worst-case	partitioning
� Produces	one	subproblem	with	n – 1 elements	and	one	
with	0 elements

T(n) = T(n – 1) + T(0) + Q(n) // Q(n): partitioning cost
= Q(n2)

� Same	running	time	as	insertion	sort
� In	fact,	the	worst-case	running	time	occur	when	
quicksort	takes	a	sorted	array	as	input,	but	insertion	sort	
runs	in	O(n)	time	in	this	case

Worst-case partitioning
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Best-case partitioning
� Best-case	partitioning

� If	we’re	really	lucky,	produces	two	subproblem	
each	with	n/2

T(n) = 2T(n / 2) + Q(n) ,	Q(n):	partitioning	cost
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Best-case partitioning
� Best-case	partitioning

� If	we’re	really	lucky,	produces	two	subproblem	
each	with	n/2

T(n) = 2T(n / 2) + Q(n) ,	Q(n):	partitioning	cost

� Using	master	theorem
� a = 2, b = 2, f(n) = Q(n)
�

� Case 2 applies:
( ) ( ) ( )nnnnf ab Q=Q=Q= 2loglog 2)(

( ) ( )nnnnnT lglg)( 2log2 Q=Q=
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Best-case partitioning
� Best-case	partitioning

� If	we’re	really	lucky,	produces	two	subproblem	
each	with	n/2

T(n) = 2T(n / 2) + Q(n) ,	Q(n):	partitioning	cost
= Q(n lg n)

� By	equally	balancing	the	two	sides	of	the	partition	at	every	
level	of	the	recursion,	we	get	an	asymptotically	faster	
algorithm
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Balanced partitioning
� Balanced	partitioning

� Quicksort’s	average	running	time	is	much	closer	to	the	
best	case	than	to	the	worst	case

� Imagine	that	PARTITION always	produces	a	9-to-1 split
We	obtain	the	recurrence:

T(n) = T(9n / 10) + T(n / 10) + Q(n)
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Balanced partitioning
� Balanced	partitioning

� What	if	the	split	is	always	9-to-1?
T(n) = T(9n / 10) + T(n / 10) + Q(n)

cn

cn
10
1 cn

10
9

cn
100
1 cn

100
9 cn

100
9 cn

100
81

Q(1)

Q(1)

log10n

O(n) leaves

log10/9n

... ... ...

cn

cn

cn

...

cnlog10n £ T(n) £ cnlog10/9n + O(n) = O(n log n) 

£ cn
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Intuition for the average case
� Intuition	for	the	average	case

� Splits	in	the	recursion	tree	will	not	always	be	constant
� There	will	usually	be	a	mix	of	good	and	bad	splits	
throughout	the	recursion	tree

� To	see	that	this	doesn’t	affect	the	asymptotic	running	
time	of	quicksort,	assume	that	levels	alternate	between	
best-case	(good)	and	worst-case	(bad)	splits
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Intuition for the average case
� Intuition	for	the	average	case

� Two	levels	of	a	recursion	tree	for	quicksort
� Partitioning	cost:		Q(n)	+	 Q(n – 1)	=	Q(n)

n

0 n – 1

1
2
)1(
-

-n
2
)1( -n

Q(n)
Bad	split

Good	split
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Intuition for the average case
� Intuition	for	the	average	case

� A	single	level	of	a	recursion	tree	for	quicksort
� Partitioning	cost:	Q(n)

n

2
)1( -n

2
)1( -n

Q(n)

Very	well	balanced
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Intuition for the average case
� Suppose	we	alternate	lucky,	unlucky,	lucky,	unlucky,	
lucky,	….

L(n) = 2U(n/2) + Θ(n) lucky
U(n) = L(n –1) + Θ(n) unlucky

� Solving:
L(n) = 2(L(n/2 – 1) + Θ(n/2)) + Θ(n)

= 2L(n/2 – 1) + Θ(n)
= Θ(n lg n) : Master theorem case 2 applies

� How	can	we	make	sure	we	are	usually	lucky?
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Quiz 2 (1)
� Use	the	substitution	method	to	prove	that	the	
recurrence	T(n)	=	T(n – 1)	+	Q(n)	has	the	solution
T(n)	=	Q(n2)
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Quiz 2 (2)
� Use	the	substitution	method	to	prove	that	the	
recurrence	T(n)	=	T(n – 1)	+	Q(n)	has	the	solution
T(n)	=	Q(n2)
� We	guess	that	T(n)	£ O(n2)

T(n) £ c1(n – 1)2 +	Q(n)
£ c1(n – 1)2 +	c0n
£ c1n2 – (2c1 – c0)n +	c1
£ c1n2 for	n0 ³ 1	and	c0 >	c1

Thus	T(n)	Î O(n2).	Similarly,	we	can	prove	that	T(n)	Î W(n2).	
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Quiz 3 (1)
� What	is	the	running	time	of	Quicksort	when	all	
elements	of	array	A have	the	same	value?
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Quiz 3 (2)
� What	is	the	running	time	of	Quicksort	when	all	
elements	of	array	A have	the	same	value?
� If	all	elements	are	the	same,	the	quick	sort	partition	
return	index	q =	r.

� The	problem	with	size	n is	reduced	to	one	sub-problem	
with	size	n – 1:	
T(n)	=	T(n – 1)	+	Q(n), Q(n)	is	a	partitioning	cost
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Randomized Quicksort
� Randomized	version	of	quicksort

� We	have	assumed	that	all	input	permutations	are	
equally	likely.

� This	is	not	always	true.
� To	correct	this,	we	add	randomization	to	quicksort.
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Randomized Quicksort
� Idea:	instead	of	always	A[r] as	the	pivot,	we	will	select	
a	randomly	chosen	element	from	the	subarray	A[p . . r]
� Running	time	is	independent	of	the	input	order.
� No	assumptions	need	to	be	made	about	the	input	
distribution.

� No	specific	input	elicits	the	worst-case	behavior.
� The	worst	case	is	determined	only	by	the	output	of	a	
random-number	generator.
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Randomized Quicksort
RANDOMIZED-PARTITION(A, p, r)
1. i = RANDOM(p, r)
2. exchange A[r] with A[i]
3. return PARTITION(A, p, r)

RANDOMIZED-QUICKSORT(A, p, r)
1. if p < r
2. q = RANDOMIZED-PARTITION(A, p, r)
3. RANDOMIZED-QUICKSORT(A, p, q – 1)
4. RANDOMIZED-QUICKSORT(A, q + 1, r)

Randomly	selecting	the	pivot	element	will,	
on	average,	cause	the	split	of	the	input	array	
to	be	reasonably	well	balanced
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Analysis of Quicksort: Average Case
� For	simplicity,	assume:

� All	inputs	distinct	(no	repeats)
� Slightly	different	PARTITION()	procedure

� Partition	around	a	random	element,	which	is	not	included	in	
subarrays

� All	splits	(0:n-1,	1:n-2,	2:n-3,	…	,	n-1:0)	equally	likely
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Analysis of Quicksort: Average Case
� For	simplicity,	assume:

� All	inputs	distinct	(no	repeats)
� Slightly	different	PARTITION()	procedure

� Partition	around	a	random	element,	which	is	not	included	in	
subarrays

� All	splits	(0:n-1,	1:n-2,	2:n-3,	…	,	n-1:0)	equally	likely
� What	is	the	probability	of	a	particular	split	happening?

� Answer:	1/n
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Analysis of Quicksort: Average Case
� So	partition	generates	splits

(0:n-1,	1:n-2,	2:n-3,	…	,	n-1:0)	
each	with	probability	1/n

� If	T(n)	is	the	expected	running	time

� What	is	each	term	under	the	summation	for?
� What	is	the	Q(n) term	for?

[ ] )()1()(1)(
1

0
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Analysis of Quicksort: Average Case
� So…

� Note:	this	is	just	like	the	recurrence	expect	that	the	
summation	starts	with	k =	0
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Analysis of Quicksort: Average Case
� We	can	solve	this	recurrence	using	the	substitution	
method
� Guess	the	answer
� Assume	that	the	inductive	hypothesis	holds
� Substitute	it	in	for	some	value	<	n
� Prove	that	it	follows	for	n
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Analysis of Quicksort: Average Case
� We	can	solve	this	recurrence	using	the	substitution	
method
� Guess	the	answer

� What’s	the	answer?
� Assume	that	the	inductive	hypothesis	holds
� Substitute	it	in	for	some	value	<	n
� Prove	that	it	follows	for	n
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Analysis of Quicksort: Average Case
� We	can	solve	this	recurrence	using	the	substitution	
method
� Guess	the	answer

� T(n)	=	O(n lg n)
� Assume	that	the	inductive	hypothesis	holds
� Substitute	it	in	for	some	value	<	n
� Prove	that	it	follows	for	n
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Analysis of Quicksort: Average Case
� We	can	solve	this	recurrence	using	the	substitution	
method
� Guess	the	answer

� T(n)	=	O(n lg n)
� Assume	that	the	inductive	hypothesis	holds

� What’s	the	inductive	hypothesis?

� Substitute	it	in	for	some	value	<	n
� Prove	that	it	follows	for	n
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Analysis of Quicksort: Average Case
� We	can	solve	this	recurrence	using	the	substitution	
method
� Guess	the	answer

� T(n)	=	O(n lg n)
� Assume	that	the	inductive	hypothesis	holds

� T(n)	£ an lg n +	b for	some	constant	a and	b
� Substitute	it	in	for	some	value	<	n
� Prove	that	it	follows	for	n
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Analysis of Quicksort: Average Case
� We	can	solve	this	recurrence	using	the	substitution	
method
� Guess	the	answer

� T(n)	=	O(n lg n)
� Assume	that	the	inductive	hypothesis	holds

� T(n)	£ an lg n +	b for	some	constant	a and	b
� Substitute	it	in	for	some	value	<	n

� What	value?

� Prove	that	it	follows	for	n
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Analysis of Quicksort: Average Case
� We	can	solve	this	recurrence	using	the	substitution	
method
� Guess	the	answer

� T(n)	=	O(n lg n)
� Assume	that	the	inductive	hypothesis	holds

� T(n)	£ an lg n +	b for	some	constant	a and	b
� Substitute	it	in	for	some	value	<	n

� The	value	k in	the	recurrence

� Prove	that	it	follows	for	n
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Analysis of Quicksort: Average Case

The recurrence to be solved( ) ( ) ( )
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Note: leaving the recurrence

Plug in inductive hypothesis

Expand out the k = 0 case

2b/n is just a constant, 
so fold it into Q(n)

48



Analysis of Quicksort: Average Case
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Evaluate the summation: 
b + b +…+ b = b (n - 1)

The recurrence to be solved

Since n - 1 < n, 2b(n - 1)/n < 2b

Distribute the summation

This summation gets its own set of slides later

49



Analysis of Quicksort: Average Case

Pick a large enough that
an/4 dominates Q(n)+b

Remember, our goal is to get 
T(n) £ an lg n + b

We’ll prove this later

Distribute the (2a/n) term

The recurrence to be solved( ) ( )
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Analysis of Quicksort: Average Case
� So	T(n)	£ an lg n +	b for	certain	a and	b

� Thus	the	induction	holds
� Thus	T(n)	=	O(n lg n)
� Thus	quicksort	runs	in	O(n lg n)	time	on	average	
(phew!)
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Quicksort in practice
� Quicksort	is	a	great	general-purpose	sorting	algorithm.
� Quicksort	is	typically	over	twice	as	fast	as	merge	sort.
� Quicksort	can	benefit	substantially	from	code	tuning.
� Quicksort	behaves	well	even	with	caching	and	virtual	
memory.
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Tightly Bounding 
The Key Summation

The lg k in the second term is 
bounded by lg n
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Move the lg n outside the 
summation

Split the summation for a 
tighter bound
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Tightly Bounding 
The Key Summation

The summation bound so far
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The lg k in the first term is 
bounded by lg n/2

lg n/2 = lg n - 1

Move (lg n - 1) outside the 
summation
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Tightly Bounding 
The Key Summation

The summation bound so far( )
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Distribute the (lg n - 1)

The summations overlap in  
range; combine them

The Guassian series
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Tightly Bounding 
The Key Summation

The summation bound so far
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Rearrange first term, place 
upper bound on second

X Guassian series

Multiply it 
all out
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Tightly Bounding 
The Key Summation

( )

!!Done!
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