Quicksort Prepared by Suk Jin Lee

Overview

Quicksort

- Sorts "in place"
- Sorts O(*n* lg *n*) in the average case
- Sorts $O(n^2)$ in the worst case
 - But in practice, it's quick
 - And the worst case doesn't happen often

Quicksort

- Uses a Divide and conquer strategy
- Sorts "in place" (cf. Mergesort needs extra space)
- Very practical (with tuning)
- The original problem partitioned into simpler subproblems
- Each sub problem considered independently
- Unlike merge sort, no combining step: two subarrays form an already-sorted array

Divide and conquer

- **Divide**: partition the array A[p ldots r] into two subarrays A[p ldots q-1] and A[q+1 ldots r] such that each element of $A[p ldots q-1] \le A[q] \le A[q+1 ldots r]$
- Conquer: sort the two subarrays A[p . . q 1] and A[q + 1 . . r] by recursive calls to quicksort
- **Combine**: subarrays already sorted. No work needed

QUICKSORT(A, p, r)

- **1. if** p < r
- 2. q = PARTITION(A, p, r)
- 3. **QUICKSORT**(A, p, q-1)
- 4. **QUICKSORT**(A, q + 1, r)

Initial call is QUICKSORT(A, 1, n)

- Clearly, all the action takes place in the PARTITION() function
 - Rearrange the subarray in place
 - End result:
 - Two subarrays
 - All values in first subarray ≤ all values in second
 - Returns the index of the "pivot" element separating the two subarrays

Partition procedure

PARTITION(A, p, r)

- 1. x = A[r] // select the last element in A[] as the pivot
- 2. i = p 1
- 3. **for** j = p to r 1
- 4. **if** $A[j] \leq x$
- 5. i = i + 1
- 6. exchange A[i] with A[j]
- 7. exchange A[i+1] with A[r]
- **8**. **return** *i* + 1

Partition procedure

PARTITION(A, p, r)

- 1. x = A[r] // select the last element in A[] as the pivot
- 2. i = p 1
- 3. **for** j = p to r 1
- 4. **if** $A[j] \leq x$
- 5. i = i + 1
- 6. exchange A[i] with A[j]
- 7. exchange A[i+1] with A[r]
- **8**. **return** *i* + 1

What is the running time of PARTITION()?

Partition procedure

PARTITION(A, p, r) 1. x = A[r] // select the last element in A[] as the pivot

- 2. i = p 1
- 3. **for** j = p to r 1
- 4. **if** $A[j] \leq x$
- 5. i = i + 1
- 6. exchange A[i] with A[j]
- 7. exchange A[i+1] with A[r]
- **8**. **return** *i* + 1

What is the running time of PARTITION()? PARTITION() runs in $\Theta(n)$

Operation of Partition

p i		j					r
2	8	7	1	3	5	6	4

 $A[j] = 2 \le \text{Pivot } 4 = A[r]. \ i = i + 1$ then exchange A[i] with A[j]

A[j] >Pivot 4, no increase of i

A[j] >Pivot 4, no increase of i

Operation of Partition

 $A[j] \le \text{Pivot 4.} \quad i = i + 1 \text{ then}$ exchange A[i] with A[j]

 $A[j] \le \text{Pivot 4.} \quad i = i + 1 \text{ then}$ exchange A[i] with A[j]

A[j] >Pivot 4, no increase of i

Operation of Partition

A[j] >Pivot 4, no increase of i

j > r - 1, escape the Loop Exchange A[i + 1] with A[r]

The pivot lies between the two partitions

• Four regions maintained by the procedure PARTITION on a subarray *A*[*p* ... *r*]

The running time of PARTITION on subarray $A[p \dots r]$ is $\Theta(n)$

Quiz 1

• Using the previous figure model, illustrate the operation of PARTITION on the array $A = \langle 13, 19, 9, 5, 12, 8, 7, 4, 21, 2, 6, 11 \rangle$

Performance of Quicksort

Prepared by Suk Jin Lee

Quicksort Analysis

- What will be the worst case for the algorithm?
 - Partition is always unbalanced
- What will be the best case for the algorithm?
 - Partition is perfectly balanced
- Which is more likely?
 - The latter
- Will any particular input elicit the worst case?
 - Yes: Already-sorted input

Worst-case partitioning

- Worst-case partitioning
 - Produces one subproblem with *n* 1 elements and one with 0 elements

 $T(n) = T(n-1) + T(0) + \Theta(n) // \Theta(n)$: partitioning cost

• Partitioning costs $\Theta(n)$

Worst-case partitioning

- Worst-case partitioning
 - Produces one subproblem with *n* 1 elements and one with 0 elements

 $T(n) = T(n-1) + T(0) + \Theta(n) // \Theta(n): \text{ partitioning cost}$ = $T(n-1) + \Theta(n) // T(0) = \Theta(1)$ = $T(n-2) + \Theta(n) + \Theta(n) = T(n-2) + 2 \cdot \Theta(n)$ = $T(n-k) + \Theta(n) + (k-1) \cdot \Theta(n) = T(n-k) + k \cdot \Theta(n)$ = $\Theta(n^2)$

Worst-case partitioning

- Worst-case partitioning
 - Produces one subproblem with *n* 1 elements and one with 0 elements
 - $T(n) = T(n-1) + T(0) + \Theta(n) // \Theta(n): \text{ partitioning cost}$ $= \Theta(n^2)$
 - Same running time as insertion sort
 - In fact, the worst-case running time occur when quicksort takes a sorted array as input, but insertion sort runs in O(*n*) time in this case

Best-case partitioning

- Best-case partitioning
 - If we're really lucky, produces two subproblem each with n/2

 $T(n) = 2T(n/2) + \Theta(n)$, $\Theta(n)$: partitioning cost

Best-case partitioning

- Best-case partitioning
 - If we're really lucky, produces two subproblem each with n/2

 $T(n) = 2T(n/2) + \Theta(n)$

, $\Theta(n)$: partitioning cost

• Using master theorem

•
$$a = 2, b = 2, f(n) = \Theta(n)$$

• $f(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_2 2}) = \Theta(n)$

• Case 2 applies:

$$T(n) = \Theta(n^{\log_2 2} \lg n) = \Theta(n \lg n)$$

Best-case partitioning

- Best-case partitioning
 - If we're really lucky, produces two subproblem each with n/2

 $T(n) = 2T(n / 2) + \Theta(n) , \Theta(n): \text{ partitioning cost}$ $= \Theta(n \lg n)$

• By equally balancing the two sides of the partition at every level of the recursion, we get an asymptotically faster algorithm

Balanced partitioning

- Balanced partitioning
 - Quicksort's average running time is much closer to the best case than to the worst case
 - Imagine that PARTITION always produces a 9-to-1 split We obtain the recurrence:

 $T(n) = T(9n / 10) + T(n / 10) + \Theta(n)$

Balanced partitioning

- Balanced partitioning
 - What if the split is always 9-to-1?

 $T(n) = T(9n / 10) + T(n / 10) + \Theta(n)$

 $cn\log_{10}n \le T(n) \le cn\log_{10/9}n + O(n) = O(n \log \frac{n}{23})$

- Intuition for the average case
 - Splits in the recursion tree will not always be constant
 - There will usually be a mix of good and bad splits throughout the recursion tree
 - To see that this doesn't affect the asymptotic running time of quicksort, assume that levels alternate between best-case (good) and worst-case (bad) splits

- Intuition for the average case
 - Two levels of a recursion tree for quicksort
 - Partitioning cost: $\Theta(n) + \Theta(n-1) = \Theta(n)$

- Intuition for the average case
 - A single level of a recursion tree for quicksort
 - Partitioning cost: $\Theta(n)$

 Suppose we alternate lucky, unlucky, lucky, unlucky, lucky,

$L(n) = 2U(n/2) + \Theta(n)$	lucky
$U(n) = L(n-1) + \Theta(n)$	unlucky

Solving:

$$L(n) = 2(L(n/2 - 1) + \Theta(n/2)) + \Theta(n)$$

= $2L(n/2 - 1) + \Theta(n)$
= $\Theta(n \lg n)$: Master theorem case 2 applies

• How can we make sure we are usually lucky?

Quiz 2 (1)

• Use the substitution method to prove that the recurrence $T(n) = T(n - 1) + \Theta(n)$ has the solution $T(n) = \Theta(n^2)$

Quiz 2 (2)

- Use the substitution method to prove that the recurrence $T(n) = T(n 1) + \Theta(n)$ has the solution $T(n) = \Theta(n^2)$
 - We guess that $T(n) \leq O(n^2)$ $T(n) \leq c_1(n-1)^2 + \Theta(n)$ $\leq c_1(n-1)^2 + c_0 n$ $\leq c_1n^2 - (2c_1 - c_0)n + c_1$ $\leq c_1n^2$ for $n_0 \geq 1$ and $c_0 > c_1$

Thus $T(n) \in O(n^2)$. Similarly, we can prove that $T(n) \in \Omega(n^2)$.

Quiz 3 (1)

• What is the running time of Quicksort when all elements of array *A* have the same value?

Quiz 3 (2)

- What is the running time of Quicksort when all elements of array *A* have the same value?
 - If all elements are the same, the quick sort partition return index *q* = *r*.
 - The problem with size *n* is reduced to one sub-problem with size *n* 1:

 $T(n) = T(n - 1) + \Theta(n)$, $\Theta(n)$ is a partitioning cost

A Randomized version of Quicksort

Prepared by Suk Jin Lee

Randomized Quicksort

- Randomized version of quicksort
 - We have assumed that all input permutations are equally likely.
 - This is not always true.
 - To correct this, we add randomization to quicksort.

Randomized Quicksort

- *Idea*: instead of always *A*[*r*] as the pivot, we will select a randomly chosen element from the subarray *A*[*p* . . *r*]
 - Running time is independent of the input order.
 - No assumptions need to be made about the input distribution.
 - No specific input elicits the worst-case behavior.
 - The worst case is determined only by the output of a random-number generator.

Randomized Quicksort

RANDOMIZED-PARTITION(A, p, r)

- i = RANDOM(p, r)
- 2. exchange A[r] with A[i]
- 3. return PARTITION(A, p, r)

Randomly selecting the pivot element will, on average, cause the split of the input array to be reasonably well balanced

RANDOMIZED-QUICKSORT(A, p, r)

- $1. \quad if p < r$
- 2. q = RANDOMIZED-PARTITION(A, p, r)
- 3. **RANDOMIZED-QUICKSORT**(A, p, q-1)
- 4. **RANDOMIZED-QUICKSORT**(A, q + 1, r)

Analysis of Quicksort

Prepared by Suk Jin Lee

- For simplicity, assume:
 - All inputs distinct (no repeats)
 - Slightly different PARTITION() procedure
 - Partition around a random element, which is not included in subarrays
 - All splits (0:*n*-1, 1:*n*-2, 2:*n*-3, ..., n-1:0) equally likely

- For simplicity, assume:
 - All inputs distinct (no repeats)
 - Slightly different PARTITION() procedure
 - Partition around a random element, which is not included in subarrays
 - All splits (0:*n*-1, 1:*n*-2, 2:*n*-3, ..., n-1:0) equally likely
 - What is the probability of a particular split happening?
 - Answer: 1/n

- So partition generates splits (0:n-1, 1:n-2, 2:n-3, ..., n-1:0) each with probability 1/n
- If T(n) is the expected running time $T(n) = \frac{1}{n} \sum_{k=0}^{n-1} \left[T(k) + T(n-1-k) \right] + \Theta(n)$
- What is each term under the summation for?
- What is the $\Theta(n)$ term for?

• So...

$$T(n) = \frac{1}{n} \sum_{k=0}^{n-1} \left[T(k) + T(n-1-k) \right] + \Theta(n)$$

$$=\frac{2}{n}\sum_{k=0}^{n-1}T(k)+\Theta(n)$$

• Note: this is just like the recurrence expect that the summation starts with *k* = 0

- We can solve this recurrence using the substitution method
 - Guess the answer
 - Assume that the inductive hypothesis holds
 - Substitute it in for some value < *n*
 - Prove that it follows for *n*

- We can solve this recurrence using the substitution method
 - Guess the answer
 - What's the answer?
 - Assume that the inductive hypothesis holds
 - Substitute it in for some value < *n*
 - Prove that it follows for *n*

- We can solve this recurrence using the substitution method
 - Guess the answer
 - $T(n) = O(n \lg n)$
 - Assume that the inductive hypothesis holds
 - Substitute it in for some value < *n*
 - Prove that it follows for *n*

- We can solve this recurrence using the substitution method
 - Guess the answer
 - $T(n) = O(n \lg n)$
 - Assume that the inductive hypothesis holds
 - What's the inductive hypothesis?
 - Substitute it in for some value < *n*
 - Prove that it follows for *n*

- We can solve this recurrence using the substitution method
 - Guess the answer
 - $T(n) = O(n \lg n)$
 - Assume that the inductive hypothesis holds
 - $T(n) \le an \lg n + b$ for some constant a and b
 - Substitute it in for some value < *n*
 - Prove that it follows for *n*

- We can solve this recurrence using the substitution method
 - Guess the answer
 - $T(n) = O(n \lg n)$
 - Assume that the inductive hypothesis holds
 - $T(n) \le an \lg n + b$ for some constant a and b
 - Substitute it in for some value < *n*
 - What value?
 - Prove that it follows for *n*

- We can solve this recurrence using the substitution method
 - Guess the answer
 - $T(n) = O(n \lg n)$
 - Assume that the inductive hypothesis holds
 - $T(n) \le an \lg n + b$ for some constant a and b
 - Substitute it in for some value < *n*
 - The value *k* in the recurrence
 - Prove that it follows for *n*

$$T(n) = \frac{2}{n} \sum_{k=0}^{n-1} T(k) + \Theta(n)$$

$$\leq \frac{2}{n} \sum_{k=0}^{n-1} (ak \lg k + b) + \Theta(n)$$

$$\leq \frac{2}{n} \left[b + \sum_{k=1}^{n-1} (ak \lg k + b) \right] + \Theta(n)$$

$$= \frac{2}{n} \sum_{k=1}^{n-1} (ak \lg k + b) + \frac{2b}{n} + \Theta(n)$$

$$= \frac{2}{n} \sum_{k=1}^{n-1} (ak \lg k + b) + \Theta(n)$$

The recurrence to be solved

Plug in inductive hypothesis

Expand out the k = 0 case

2b/n is just a constant, so fold it into $\Theta(n)$

Note: leaving the recurrence

$$T(n) = \frac{2}{n} \sum_{k=1}^{n-1} (ak \lg k + b) + \Theta(n)$$

= $\frac{2}{n} \sum_{k=1}^{n-1} ak \lg k + \frac{2}{n} \sum_{k=1}^{n-1} b + \Theta(n)$
= $\frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + \frac{2b}{n} (n-1) + \Theta(n)$
 $\leq \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + 2b + \Theta(n)$

This summation gets its own set of slides later

The recurrence to be solved

Distribute the summation

Evaluate the summation: b + b + ... + b = b (n - 1)

Since n - 1 < n, 2b(n - 1)/n < 2b

$$T(n) \leq \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + 2b + \Theta(n)$$

The recurrence to be solved
$$\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + 2b + \Theta(n)$$

We'll prove this later
$$= an \lg n - \frac{a}{4} n + 2b + \Theta(n)$$

Distribute the (2a/n) term
$$= an \lg n + b + \left(\Theta(n) + b - \frac{a}{4} n \right)$$

Remember, our goal is to get
 $T(n) \leq an \lg n + b$
Pick a large enough that

50

an/4 dominates $\Theta(n)+b$

- So $T(n) \le an \lg n + b$ for certain a and b
 - Thus the induction holds
 - Thus $T(n) = O(n \lg n)$
 - Thus quicksort runs in O(*n* lg *n*) time on average (phew!)

Quicksort in practice

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort can benefit substantially from code tuning.
- Quicksort behaves well even with caching and virtual memory.

Oh yeah, the summation

Split the summation for a tighter bound

The lg k in the second term is bounded by lg n

Move the lg *n* outside the summation

$$\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k \lg k + \lg n \sum_{k=\lfloor n/2 \rfloor}^{n-1} k$$

$$\leq \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k \lg (n/2) + \lg n \sum_{k=\lfloor n/2 \rfloor}^{n-1} k$$

$$= \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k (\lg n - 1) + \lg n \sum_{k=\lfloor n/2 \rfloor}^{n-1} k$$

$$= (\lg n - 1) \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k + \lg n \sum_{k=\lfloor n/2 \rfloor}^{n-1} k$$

The summation bound so far

The lg k in the first term is bounded by lg n/2

 $\lg n/2 = \lg n - 1$

Move (lg *n* - 1) outside the summation

$$\sum_{k=1}^{n-1} k \lg k \leq \left(\frac{(n-1)(n)}{2}\right) \lg n - \sum_{k=1}^{\lceil n/2 \rceil - 1} k \qquad \text{The summation bound so far}$$

$$\leq \frac{1}{2} [n(n-1)] \lg n - \sum_{k=1}^{n/2-1} k \qquad \text{Rearrange first term, place upper bound on second}$$

$$\leq \frac{1}{2} [n(n-1)] \lg n - \frac{1}{2} \left(\frac{n}{2}\right) \left(\frac{n}{2} - 1\right) \qquad \text{X Guassian series}$$

$$\leq \frac{1}{2} (n^2 \lg n - n \lg n) - \frac{1}{8} n^2 + \frac{n}{4} \qquad \text{Multiply it all out}$$

$$\sum_{k=1}^{n-1} k \lg k \le \frac{1}{2} \left(n^2 \lg n - n \lg n \right) - \frac{1}{8} n^2 + \frac{n}{4}$$
$$\le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \text{ when } n \ge 2$$

Done!!!