Sorting in Linear Time
 Prepared by Suk Jin Lee

Sorting So Far

- Insertion sort:
- Easy to code
- Fast on small inputs (less than ~ 50 elements)
- Fast on nearly-sorted inputs
- $\mathrm{O}\left(n^{2}\right)$ worst case
- $\mathrm{O}\left(n^{2}\right)$ average (equally-likely inputs) case
- $\mathrm{O}\left(n^{2}\right)$ reverse-sorted case

Sorting So Far

- Merge sort:
- Divide-and-conquer:
- Split array in half
- Recursively sort subarrays
- Linear-time merge step
- $\mathrm{O}(n \lg n)$ worst case
- Doesn't sort in place

Sorting So Far

- Heapsort:
- Uses the very useful heap data structure
- Complete binary tree
- Heap property: parent key > children's keys
- $\mathrm{O}(n \lg n)$ worst case
- Sorts in place
- Fair amount of shuffling memory around

Sorting So Far

- Quicksort:
- Divide-and-conquer:
- Partition array into two subarrays, recursively sort
- All of first subarray < all of second subarray
- No merge step needed!
- $\mathrm{O}(n \lg n)$ average case
- Fast in practice
- $\mathrm{O}\left(n^{2}\right)$ worst case
- Naïve implementation: worst case on sorted input
- Address this with randomized quicksort

How Fast Can We Sort?

- We will provide a lower bound, then beat it by playing a different game
- How do you suppose we'll beat it?
- First, an observation: all of the sorting algorithms so far are comparison sorts
- The only operation used to gain ordering information about a sequence is the pairwise comparison of two elements
- All sorts seen so far are comparison sorts: insertion sort, selection sort, merge sort, quicksort, heapsort

Decision Trees

- Decision trees provides an abstraction of comparison sorts
- A decision tree represents the comparisons made by a comparison sort. Every thing else ignored
- What do each internal node represent?
- What do the leaves represent?
- How many leaves must there be?

Decision Trees

- Decision tree for insertion sort operating on three elements

$$
a_{1}=6, a_{2}=8, a_{3}=5 \quad a_{i} \cdot a_{j} \quad \text { Comparison between } a_{i} \text { and } a_{j}
$$

Each leaf must be reachable from the root by a downward path

Decision Trees

- Decision trees can model comparison sorts. For a given algorithm:
- One tree for each n
- Tree paths are all possible execution traces
- What's the longest path in a decision tree for insertion sort? For merge sort?
- What is the asymptotic height of any decision tree for sorting n elements?
- Answer: $\Omega(n \lg n)$

Lower bounds for Sorting

- Theorem. Any decision tree to sort n elements requires $\Omega(n \lg n)$ comparisons in the worst case
- What's the minimum \# of leaves?
- What's the maximum \# of leaves of a binary tree of height h?

Lower bounds for Sorting

- Theorem. Any decision tree to sort n elements requires $\Omega(n \lg n)$ comparisons in the worst case
- What's the minimum \# of leaves?
- Answer: n !
- What's the maximum \# of leaves of a binary tree of height h?

Lower bounds for Sorting

- Theorem. Any decision tree to sort n elements requires $\Omega(n \lg n)$ comparisons in the worst case
- What's the minimum \# of leaves?
- Answer: n !
- What's the maximum \# of leaves of a binary tree of height h ?
- Answer: 2^{h}
- Clearly the minimum \# of leaves is less than or equal to the maximum \# of leaves

Lower bounds for Sorting

- Theorem. Any decision tree to sort n elements requires $\Omega(n \lg n)$ comparisons in the worst case
- Proof. The tree must contain $\geq n$! leaves, since there are n ! possible permutations. A height- h binary tree has no more than 2^{h} leaves. Thus, $n!\leq 2^{h}$

$$
\begin{aligned}
\therefore h & \geq \lg (\mathrm{n}!) \\
& \geq \lg \left(\left((n / e)^{n}\right)\right. \\
& =n \lg n-n \lg e \\
& =\Omega(n \lg n)
\end{aligned}
$$

(\lg is mono. Increasing)
(Stirling's approximation)

Thus the minimum height of a decision tree is $\Omega(n \lg n)$

Lower bounds for Sorting

- Thus the time to comparison sort n elements is $\Omega(n \lg n)$

Lower bounds for Sorting

- Thus the time to comparison sort n elements is $\Omega(n \lg n)$
- Corollary. Heapsort and merge sort are asymptotically optimal comparison sorts.
- Proof. The $\mathrm{O}(n \lg n)$ upper bounds on the running times for heapsort and merge sort match the $\Omega(n \lg n)$ worst-case lower bound from Theorem
- How can we do better than $\Omega(n \lg n)$?

Counting Sort

Prepared by Suk Jin Lee

Sorting in linear time

- Counting sort:
- No comparisons between elements
- Input: $A[1 \ldots n]$, where $A[j] \in\{1,2, \ldots, k\}$
- Output: $B[1$. . $n]$, sorted
- Auxiliary storage: $C[1 \ldots k]$

Counting Sort

- Counting-Sort (A, B, k)

1. Let $C[0 \ldots k]$ be a new array
2. for $i=0$ to k
3. $C[i] \leftarrow 0$
4. for $j=1$ to A.length
5. $\quad C[A[j]] \leftarrow C[A[j]]+1$
6. // $C[i]$ now contains the number of elements equal to i
7. for $i=1$ to k
8. $C[i] \leftarrow C[i]+C[i-1]$
9. // $C[i]$ now contains the number of elements less than or equal to i
10. for $j=$ A.length downto 1
11. $B[C[A[j]]] \leftarrow A[j] \quad / / C[A[j]]$ is the correct final position of $A[j]$
12. $C[A[j]] \leftarrow C[A[j]]-1$

Counting Sort

- Counting-Sort (A, B, k)

1. Let $C[0 \ldots k]$ be a new array
2. for $i=0$ to k $\Theta(k)$
3. $C[i] \leftarrow 0$
4. for $j=1$ to A.length

$$
\Theta(n)
$$

5. $C[A[j]] \leftarrow C[A[j]]+1$
6. // $C[i]$ now contains the number of elements equal to i
7. for $i=1$ to k

$$
\Theta(k)
$$

8. $C[i] \leftarrow C[i]+C[i-1]$
9. $/ / C[i]$ now contains the number of elements less than or equal to i
10. for $j=$ A.length downto 1
$\Theta(n)$
11. $B[C[A[j]]] \leftarrow A[j] \quad / / C[A[j]]$ is the correct final position of $A[j]$
12. $C[A[j]] \leftarrow C[A[j]]-1$

Counting Sort - Example

$A:$| | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Counting Sort - Example

- Loop 1

A: \begin{tabular}{c}

\multicolumn{1}{c}{| | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | }

2
\end{tabular}

\square
for $i=0$ to k $C[i] \leftarrow 0$

Counting Sort - Example

- Loop 2

i :	0	1	2	3	4	5	5
C :	0	0	1	0	0	0	0

\square
for $j=1$ to A.length

$$
C[A[j]] \leftarrow C[A[j]]+1
$$

// $C[i]$ now contains the number of elements equal to i

Counting Sort - Example

- Loop 2

for $j=1$ to A.length

$$
C[A[j]] \leftarrow C[A[j]]+1
$$

// $C[i]$ now contains the number of elements equal to i

Counting Sort - Example

- Loop 2

i :	0	1	2	3	4	5
C :	0	0	1	1	0	1

\square
for $j=1$ to A.length

$$
C[A[j]] \leftarrow C[A[j]]+1
$$

// $C[i]$ now contains the number of elements equal to i

Counting Sort - Example

- Loop 2

i :	0	1	2	3	4	5	5
C :	1	0	1	1	0	1	1

\square
for $j=1$ to A.length

$$
C[A[j]] \leftarrow C[A[j]]+1
$$

// $C[i]$ now contains the number of elements equal to i

Counting Sort - Example

- Loop 2

\square
for $j=1$ to A.length

$$
C[A[j]] \leftarrow C[A[j]]+1
$$

// $C[i]$ now contains the number of elements equal to i

Counting Sort - Example

- Loop 2

i :	0	1	2	3	4	5	5
C :	1	0	2	2	0		1

\square
for $j=1$ to A.length

$$
C[A[j]] \leftarrow C[A[j]]+1
$$

// $C[i]$ now contains the number of elements equal to i

Counting Sort - Example

- Loop 2

i :	0	1	2	3	4	5
C :	2	0	2	2	0	1

\square
for $j=1$ to A.length

$$
C[A[j]] \leftarrow C[A[j]]+1
$$

// $C[i]$ now contains the number of elements equal to i

Counting Sort - Example

- Loop 2

for $j=1$ to A.length

$$
C[A[j]] \leftarrow C[A[j]]+1
$$

// $C[i]$ now contains the number of elements equal to i

Counting Sort - Example

- Loop 3

\square

for $i=1$ to k

$$
C[i] \leftarrow C[i]+C[i-1]
$$

// $C[i]$ now contains the number of elements less than or equal to i

Counting Sort - Example

- Loop 3

\square

for $i=1$ to k

$$
C[i] \leftarrow C[i]+C[i-1]
$$

// $C[i]$ now contains the number of elements less than or equal to i

Counting Sort - Example

- Loop 3

for $i=1$ to k

$$
C[i] \leftarrow C[i]+C[i-1]
$$

// $C[i]$ now contains the number of elements less than or equal to i

Counting Sort - Example

- Loop 3

for $i=1$ to k

$$
C[i] \leftarrow C[i]+C[i-1]
$$

// $C[i]$ now contains the number of elements less than or equal to i

Counting Sort - Example

- Loop 3

for $i=1$ to k

$$
C[i] \leftarrow C[i]+C[i-1]
$$

// $C[i]$ now contains the number of elements less than or equal to i

Counting Sort - Example

- Loop 4

i :	0	1	2	3	4	5
C	2	0	2	3	0	1

for $j=$ A.length downto 1
$B[C[A[j]]] \leftarrow A[j] \quad / / C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]]-1$

Counting Sort - Example

- Loop 4

for $j=$ A.length downto 1 $B[C[A[j]]] \leftarrow A[j] \quad / / C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]]-1$

Counting Sort - Example

- Loop 4

	P					j		
j :	1	2	3	4	5	6	7	8
A :	2	5	3	0	2	3	0	3
	1	2	3	4	5	6	7	8
B :		0				3	3	

for $j=$ A.length downto 1
$B[C[A[j]]] \leftarrow A[j] \quad / / C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]]-1$

Counting Sort - Example

- Loop 4

					[j]			
					\downarrow			
j :	1	2	3	4	5	6	7	8
A	2	5	3	0	2	3	0	3
	1	2	3		5	6	7	8
B		0		2		3	3	

for $j=$ A.length downto 1
$B[C[A[j]]] \leftarrow A[j] \quad / / C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]]-1$

Counting Sort - Example

- Loop 4

$A[j]$								
j :				\downarrow				
	1	2	3		5	6	7	8
A	2	5	3	0	2	3	0	3
$1 \longdiv { 2 }$				4	5	6	7	8
B:	0	0		2		3	3	

for $j=$ A.length downto 1

$B[C[A[j]]] \leftarrow A[j] \quad / / C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]]-1$

Counting Sort - Example

- Loop 4

			[j]					
j :	1	2	$\begin{aligned} & \downarrow \\ & 3 \end{aligned}$	4	5	6	7	8
A	2	5	3	0	2	3	0	3
	1	2	3	4	5	6	7	8
B	0	0		2	3	3	3	

for $j=$ A.length downto 1 $B[C[A[j]]] \leftarrow A[j] \quad / / C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]]-1$

Counting Sort - Example

- Loop $4_{A[j]}$

i :	0	1	2	3	4	5
C :	2	0	2	3	0	1
i :	0	1	2	3	4	5
C^{\prime} :	0	2	3	4	7	7

for $j=$ A.length downto 1
$B[C[A[j]]] \leftarrow A[j] \quad / / C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]]-1$

Counting Sort - Example

- Loop 4

for $j=$ A.length downto 1
$B[C[A[j]]] \leftarrow A[j] \quad / / C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]]-1$

Analysis

- Counting-Sort(A, B, k)

$$
\begin{aligned}
& \text { for } i=0 \text { to } k \\
& \quad C[i] \leftarrow 0 \\
& \text { for } j=1 \text { to } \text { A.length } \\
& \quad C[A[j]] \leftarrow C[A[j]]+1 \\
& \text { for } i=1 \text { to } k \\
& \quad C[i] \leftarrow C[i]+C[i-1]
\end{aligned} \quad \Theta(n)
$$

for $j=$ A.length downto 1
$B[C[A[j]]] \leftarrow A[j]$
$C[A[j]] \leftarrow C[A[j]]-1$
$\Theta(n)$
$\Theta(n+k)$

Running time

- If $k=\mathrm{O}(n)$, then counting sort takes $\Theta(n)$ time.
- Counting sort beats the lower bound of $\Theta(n \lg n)$ comparison sort
- Counting sort is not a comparison sort
- Stable sorting
- Counting sort is a stable sort: it preserves the input order among equal elements.

Counting Sort

- Cool!
- Why don't we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large ($\left.2^{32}=4,294,967,296\right)$

Quiz

- Using the previous figure model, illustrate the operation of COUNT-Sort on the array $A=\langle 6,0,2,0,1,3,4,6,1,3,2\rangle$

Quiz

- Using the previous figure model, illustrate the operation of COUNT-Sort on the array $A=\langle 6,0,2,0,1,3,4,6,1,3,2\rangle$

$j:$
j
:---
$A:$

Quiz

- Using the previous figure model, illustrate the operation of COUnt-Sort on the array $A=\langle 6,0,2,0,1,3,4,6,1,3,2\rangle$
$j:$

j 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A:$ | 6 | 0 | 2 | 0 | 1 | 3 | 4 | 6 | 1 | 3 |

$i:$	0	1	2	3	4	5	6
C	2	2	2	2	1	0	2

Quiz

- Using the previous figure model, illustrate the operation of COUnt-Sort on the array $A=\langle 6,0,2,0,1,3,4,6,1,3,2\rangle$

| j: |
| :--- | 1 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A:$ | 6 | 0 | 2 | 0 | 1 | 3 | 4 | 6 | 1 | 3 |

i :	0		2	3	4	5	6
C^{\prime};	2	4	6	8	9	9	11

Quiz

- Using the previous figure model, illustrate the operation of COUnt-Sort on the array $A=\langle 6,0,2,0,1,3,4,6,1,3,2\rangle$

| j: |
| :--- | 1 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A:$ | 6 | 0 | 2 | 0 | 1 | 3 | 4 | 6 | 1 | 3 |

l

i | | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $C:$ | 2 | 2 | 2 | 2 | 1 | 0 | 2 |

i :	0	1	2	3	4	5	6
C^{\prime};	2	4	6	8	9	9	11

