

y v

Heaps

A heap is a binary tree with properties:

e It is complete
» Each level of tree completely filled
 Except possibly bottom level (nodes in left most positions)
e It satisfies heap-order property (two kinds of heaps)
« Max-heap: for all node i, excluding the root
A[Parent(i)] > Ali]
« Min-heap: for all node i, excluding the root
A[Parent(i)] < Ali]

Heaps

Which of the following are heaps?
A

Yes, it is a heap...! No, it is not, b/c it is Complete! But, it is not, b/c
not complete...! heap-order condition is not
satisfied...!

e

e
Heaps

A heap can be seen as a complete binary tree:

 What makes a binary tree complete?
¢ Is the example above complete?

P — e
Heaps

A heap can be seen as a complete binary tree:

e The book calls them “nearly complete” binary trees;
can think of unfilled slots as null pointers

Heaps

¢ In practice, heaps are usually implemented as arrays:

i o

Heaps

To represent a complete binary tree as an array:
e The root node is A[1]
e NodeiisAli]
e The parent of node iis A[i/2] (note: integer divide)
e The left child of nodeiis A[21]
e The right child of nodeiis A[21 + 1]

Referencing Heap Elements

* So, we can get

PARENT(i)

1. return|i/2]
LEFT(i)

1. return 2xi
RIGHT(i)

1. return 2xi+1

Quiz—1

What are the minimum and maximum numbers of
elements in a heap of height h?

Quiz—1

What are the minimum and maximum numbers of
elements in a heap of height h?

Quiz—1

What are the minimum and maximum numbers of
elements in a heap of height h?

11

y %

Quiz—-1

What are the minimum and maximum numbers of
elements in a heap of height h?

e Since a heap is an almost-complete binary tree, it has at
most 2" — 1 elements (if it is complete)

o At least 2" —1 +1 = 2" elements

» If the lowest level has just 1 element and the other levels are
complete

e Therefore
2h<n<ahv g

12

Quiz — 2

* Show that an n-element heap has height | lg n_.

/ e A
The Heap Property

Heaps also satisfy the heap property:
A[PARENT(7)] = Ali] for all nodes i >1

e In other words, the value of a node is at most the value
of its parent

o Where is the largest element in a heap stored?
Definitions:

e The height of a node in the tree = the number of edges
on the longest downward path to a leaf

e The height of a tree = the height of its root

14

Heap Height
What is the height of an n-element heap? Why?

This is nice: basic heap operations take at most time
proportional to the height of the heap

P — i
Maintaining the heap property

Max-Heapity
e Used to maintain the max-heap property

» Before Max-Heapify, A[i] may be smaller than its
children

e Assume left and right subtrees of i are max-heaps

o After Max-Heapify, subtree rooted at i is a max-heap

16

Maintaining the heap property

Max-Heapity

MAX-HEAPIFY (4, i)

[= LEFT(7)

r = RIGHT())

if [< A.heap-size and A[l] > A[i]
largest = [

else largest =i

if ¥ < A.heap-size and A[r] > A[largest]
largest =r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest)

17

P M\/

Max-Heapify() Example

* MAX-HEAPIFY(4, 2)

Max-Heapify() Example

* MAX-HEAPIFY(4, 2)

P M\/

Max-Heapify() Example

* MAX-HEAPIFY(4, 2)

P M\/

Max-Heapify() Example

°* MAX-HEAPIFY(4, 4)

Max-Heapify() Example

°* MAX-HEAPIFY(4, 4)

P M\/

Max-Heapify() Example

°* MAX-HEAPIFY(4, 4)

P M\/

Max-Heapify() Example

* MAX-HEAPIFY(4, 9)

P M\/

Max-Heapify() Example

* MAX-HEAPIFY(4, 9)

_
Analyzing Heapify(): Informal

Aside from the recursive call, what is the running time
of Heapify()?
How many times can Heapify() recursively call itself?

What is the worst-case running time of Heapify() on a
heap of size n?

Analyzing Heapify(): Formal

Fixing up relationships between i, [, and r takes ©(1)
time

If the heap at i has n elements, how many elements
can the subtrees at [or r have?

o Answer: 2n/3 (worst case: bottom level of tree 1/2 full)

So time taken by Heapify() is given by
T(n) < T(2n/3) + ©()

Analyzing Heapify(): Formal
So we have

T(n) < T(2n/3) + ©Q)

ea=1,b=3/2, f{n) =00)

© f(n)=0n")=0n ") =0n") = 0)
By case 2 of the Master Theorem

e T'(n)= @(nlog”“ Ig n)z @)(lg n)
Thus, Heapify() takes linear time

/ Ve S —

Building a heap

Use the procedure Max-Heapify in a bottom-up

manner to convert an array A[1..n], where n = A.length,
into a max-heap.
Build-Max-Heap(A4)

A.heap-size = A .length

for i = |_A.length /2| downto 1 O(n)
Max-heapify(4, largest) O(lg n)
Simple upper bound

e Each call to Max-Heapify costs O(lg n) time, and Build-
Max-Heap make O(n) such call.
Thus, the running time 1s O(n 1g n)

29

/ AL —

Building a heap

Tight bound
o n-element heap has height | Ig n
o At most| n/2"!| nodes of any height

e Time required by Max-Heapify when called on a node of
any height h is O(h)

e Total cost

5] o =o{ s3] o[3.)=o)

h=0

« We can build a max-heap from an unordered array in linear
time

30

Building a heap Example

* Work through example: 10-element input array A

Building a heap Example

* | = 5; before the call MAX-HEAFIFY(A, i)

/X/

Building a heap Example

0i=4

33

Building a heap Example

* i = 4; call MAX-HEAFIFY(A, i)

34

Building a heap Example

* | = 4; after the call MAX-HEAFIFY(A, i)

35

/X/

Building a heap Example

®1=3

Building a heap Example

* i = 3; call MAX-HEAFIFY(A, i)

75

Building a heap Example

* i = 3; after the call MAX-HEAFIFY(A, i)

/X/

Building a heap Example

39

Building a heap Example

o [= 2; call MAX-HEAFIFY(A, 1)

Building a heap Example

Building a heap Example

* | = 2; recursively call MAX-HEAFIFY(A, largest)

Building a heap Example

13

/X/

Building a heap Example

44

Building a heap Example

¢ [=1; call MAX-HEAFIFY(A, 1)

45

/X/

Building a heap Example

46

Building a heap Example

* | = 1; recursively call MAX-HEAFIFY(A, largest)

47

/X/

Building a heap Example

48

Building a heap Example

* | = 1; recursively call MAX-HEAFIFY(A, largest)

AR

Building a heap Example

* The max-heap after BUILD-MAX-HEAP finishes

/ o oA a

Quiz -3

Using the previous figure model, illustrate the
operation of BUILD-MAX-HEAP on the array

A= <5) 3, 17, 10, 84’ 19, 6’ = 9>

51

_ —
Quiz -3

Using the previous figure model, illustrate the
operation of BUILD-MAX-HEAP on the array

A= <5) 3, 17, 10, 84’ 19, 6’ = 9>

52

_
Heapsort algorithm

Heapsort algorithm
e Build a max-heap on the input array 4[1..n] (n = A.length)
e Root A[1]: the maximum element of the array 4
e Put A[1] into its correct final position A[#n]
e Discard node from the heap: 4.heap-size — 1
e Restore the max-heap property
e Repeats this process until 4.heap-size =2

53

Py
Heapsort algorithm

HEAPSORT(A)

BUILD-MAX-HEAP(A)

for i = A.length downto 2
exchange A[1] with A[1]
A.heap-size = A.heap-size — 1
MAX-HEAPIFY(4, 1)

SIS SRS IR S B

Thus the total time taken by HeapSort()
=0(n)+(m-1)O(g n)

= 0O(n) + O(n Ig n)

= O(n Ig n)

O(n)
n—1
n—1
n—1
O(lg n)

>4

Example

* Operation of Heapsort

55

P M\/

Example

* Operation of Heapsort

P M\/

Example

* Operation of Heapsort

75

P M\/

Example

* Operation of Heapsort

Example

* Operation of Heapsort

@/@ &
© s

OXO, @ © 00 o0

A 1 2 3 4 7 8 9 10 | 14 | 16

