
Prepared	by	Suk	Jin Lee

Heaps
� A	heap is	a	binary	tree	with	properties:

� It	is	complete
� Each	level	of	tree	completely	filled
� Except	possibly	bottom	level	(nodes	in	left	most	positions)

� It	satisfies	heap-order	property	(two	kinds	of	heaps)
� Max-heap:	for	all	node	i,	excluding	the	root

� A[Parent(i)]	³ A[i]
� Min-heap:	for	all	node	i,	excluding	the	root

� A[Parent(i)]	£ A[i]

2

Heaps
� Which	of	the	following	are	heaps?

A B C
9

6 4

8 2 3

9

8 4

6 2 3

9

8 4

6 2 3

Yes,	it	is	a	heap…! No,	it	is	not,	b/c	it	is	
not	complete…!

Complete!	But,	it	is	not,	b/c	
heap-order	condition	is	not	
satisfied…!

3

Heaps
� A	heap can	be	seen	as	a	complete	binary	tree:

� What	makes	a	binary	tree	complete?
� Is	the	example	above	complete?

4

8 7 9 3

2 4 1

14 10

16

Heaps
� A	heap can	be	seen	as	a	complete	binary	tree:

� The	book	calls	them	“nearly	complete”	binary	trees;	
can	think	of	unfilled	slots	as	null	pointers

5

8 7 9 3

2 4 1

14 10

16

Heaps
� In	practice,	heaps	are	usually	implemented	as	arrays:

6

1 2 3 4 5 6 7 8 9 10

16 14 10 8 7 9 3 2 4 1

8 7 9 3

2 4 1

14 10

1

2 3

4 5 6 7

8 9 10

16

A	=

Heaps
� To	represent	a	complete	binary	tree	as	an	array:

� The	root	node	is	A[1]
� Node	i is	A[i]
� The	parent	of	node	i is	A[i/2]	(note:	integer	divide)
� The	left	child	of	node	i is	A[2i]
� The	right	child	of	node	i is	A[2i + 1]

7

Referencing Heap Elements
� So,	we	can	get

8

PARENT(i)
1. return	ëi/2û
LEFT(i)
1. return	2´i
RIGHT(i)
1. return	2´i +	1

Quiz – 1
� What	are	the	minimum	and	maximum	numbers	of	
elements	in	a	heap	of	height	h?

9

h = 0

h = 1

h = 2

h = 3

Quiz – 1
� What	are	the	minimum	and	maximum	numbers	of	
elements	in	a	heap	of	height	h?

10

h = 0

h = 1

h = 2

h = 3

Quiz – 1
� What	are	the	minimum	and	maximum	numbers	of	
elements	in	a	heap	of	height	h?

11

Quiz – 1
� What	are	the	minimum	and	maximum	numbers	of	
elements	in	a	heap	of	height	h?
� Since	a	heap	is	an	almost-complete	binary	tree,	it	has	at	
most	2h+1 – 1	elements	(if	it	is	complete)

� At	least	2h – 1	+	1	=	2h elements
� If	the	lowest	level	has	just	1 element	and	the	other	levels	are	
complete

� Therefore
2h £ n £ 2h+1 – 1

12

Quiz – 2
� Show	that	an	n-element	heap	has	height	ëlg nû.

13

The Heap Property
� Heaps	also	satisfy	the	heap	property:

A[PARENT(i)]	³ A[i] for	all	nodes	i >	1
� In	other	words,	the	value	of	a	node	is	at	most	the	value	
of	its	parent

� Where	is	the	largest	element	in	a	heap	stored?
� Definitions:

� The	height of	a	node	in	the	tree	=	the	number	of	edges	
on	the	longest	downward	path	to	a	leaf	

� The	height	of	a	tree	=	the	height	of	its	root

14

Heap Height
� What	is	the	height	of	an	n-element	heap?	Why?
� This	is	nice:	basic	heap	operations	take	at	most	time	
proportional	to	the	height	of	the	heap

15

Maintaining the heap property
� Max-Heapify

� Used	to	maintain	the	max-heap	property
� Before	Max-Heapify,	A[i]	may	be	smaller	than	its	
children

� Assume	left	and	right	subtrees	of	i are	max-heaps
� After	Max-Heapify,	subtree	rooted	at	i is	a	max-heap

16

Maintaining the heap property
� Max-Heapify

MAX-HEAPIFY(A, i)
l = LEFT(i)
r = RIGHT(i)
if l £ A.heap-size and A[l] > A[i]

largest = l
else largest = i
if r £ A.heap-size and A[r] > A[largest]

largest = r
if largest ¹ i

exchange A[i] with A[largest]
MAX-HEAPIFY(A, largest)

17

Max-Heapify() Example
� MAX-HEAPIFY(A, 2)

18

4

7 9 3

2 8 1

1

2 3

4 5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

16 4 10 14 7 9 3 2 8 1A	=

14

10

16

Max-Heapify() Example
� MAX-HEAPIFY(A, 2)

19

4

7 9 3

2 8 1

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

16 4 10 14 7 9 3 2 8 1A	=

14
4

10

16

Max-Heapify() Example
� MAX-HEAPIFY(A, 2)

20

4 7 9 3

2 8 1

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

16 14 10 4 7 9 3 2 8 1A	=

4

10

16

14

Max-Heapify() Example
� MAX-HEAPIFY(A, 4)

21

4 7 9 3

2 8 1

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

16 14 10 4 7 9 3 2 8 1A	=

4

10

16

14

Max-Heapify() Example
� MAX-HEAPIFY(A, 4)

22

4 7 9 3

2 8 1

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

16 14 10 4 7 9 3 2 8 1A	=

4

10

16

14

Max-Heapify() Example
� MAX-HEAPIFY(A, 4)

23

8 7 9 3

2 4 1

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

16 14 10 8 7 9 3 2 4 1A	=

4

10

16

14

Max-Heapify() Example
� MAX-HEAPIFY(A, 9)

24

8 7 9 3

2 4 1

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

16 14 10 8 7 9 3 2 4 1A	=

4

10

16

14

Max-Heapify() Example
� MAX-HEAPIFY(A, 9)

25

1 2 3 4 5 6 7 8 9 10

16 14 10 8 7 9 3 2 4 1A	=

8 7 9 3

2 4 1

1

2 3

5 6 7

8 9 10

4

10

16

14

Analyzing Heapify(): Informal
� Aside	from	the	recursive	call,	what	is	the	running	time	
of	Heapify()?

� How	many	times	can	Heapify()	recursively	call	itself?
� What	is	the	worst-case	running	time	of	Heapify()	on	a	
heap	of	size	n?

26

Analyzing Heapify(): Formal
� Fixing	up	relationships	between	i,	l,	and	r takes	Q(1)	
time

� If	the	heap	at	i has	n elements,	how	many	elements	
can	the	subtrees	at	l or	r have?
� Answer:	2n/3	(worst	case:	bottom	level	of	tree	1/2	full)

� So	time	taken	by	Heapify()	is	given	by

T(n)	£ T(2n/3)	+	Q(1)	

27

Analyzing Heapify(): Formal
� So	we	have	

T(n)	£ T(2n/3)	+	Q(1)	

� a =	1,	b =	3/2,	f(n)	=	Q(1)
�

� By	case	2	of	the	Master	Theorem
�

� Thus,	Heapify()	takes	linear	time

28

() ()nnnnT ab lglg)(log Q=Q=

())1()()()(01loglog 2/3 Q=Q=Q=Q= nnnnf ab

Building a heap
� Use	the	procedure	Max-Heapify in	a	bottom-up	
manner	to	convert	an	array	A[1..n],	where	n = A.length,	
into	a	max-heap.

� Simple	upper	bound
� Each call to Max-Heapify costs O(lg n) time, and Build-
Max-Heap make O(n) such call.
Thus, the running time is O(n lg n)

Build-Max-Heap(A)

A.heap-size = A.length
for i = ëA.length / 2û downto 1 O(n)

Max-heapify(A, largest) O(lg n)

29

Building a heap
� Tight	bound

� n-element	heap	has	height	ëlg nû
� At	most	én/2h+1ù nodes	of	any	height
� Time	required	by	Max-Heapify when	called	on	a	node	of	
any	height	h is	O(h)

� Total	cost

� We	can	build	a	max-heap	from	an	unordered	array	in	linear	
time

()
ë û ë û

()nhnhnhn
h

h

n

h
h

n

h
h O=÷

ø

ö
ç
è

æ
O=÷÷

ø

ö
çç
è

æ
O=Oúú

ù
êê
é ååå

¥

===
+

000
1 222

lglg

30

Building a heap Example
� Work	through	example:	10-element	input	array	A

31

4

1 3

2 9

8 7

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 1 3 2 16 9 10 14 8 7A	=

4
10

14

16

Building a heap Example
� i =	5;	before	the	call	MAX-HEAFIFY(A,	i)

32

4

1 3

2 9

8 7

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 1 3 2 16 9 10 14 8 7A	=

4
10

14

16

Building a heap Example
� i =	4

33

4

1 3

2 9

8 7

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 1 3 2 16 9 10 14 8 7A	=

4
10

14

16

Building a heap Example
� i =	4;	call	MAX-HEAFIFY(A,	i)

34

4

1 3

2 9

8 7

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 1 3 2 16 9 10 14 8 7A	=

4
1016

14

Building a heap Example
� i =	4;	after	the	call	MAX-HEAFIFY(A,	i)

35

4

1 3

9

2 8 7

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 1 3 14 16 9 10 2 8 7A	=

4
101614

Building a heap Example
� i =	3

36

4

1 3

9

2 8 7

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 1 3 14 16 9 10 2 8 7A	=

4
101614

Building a heap Example
� i =	3;	call	MAX-HEAFIFY(A,	i)

37

4

1 3

9

2 8 7

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 1 3 14 16 9 10 2 8 7A	=

4

1614 10

Building a heap Example
� i =	3;	after	the	call	MAX-HEAFIFY(A,	i)

38

4

1

9 3

2 8 7

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 1 10 14 16 9 3 2 8 7A	=

4

1614

10

Building a heap Example
� i =	2

39

4

1

9 3

2 8 7

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 1 10 14 16 9 3 2 8 7A	=

4

1614

10

Building a heap Example
� i =	2;	call	MAX-HEAFIFY(A,	i)

40

4

1

9 3

2 8 7

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 1 10 14 16 9 3 2 8 7A	=

4
14

10

16

Building a heap Example
� i =	2

41

4

1 9 3

2 8 7

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 16 10 14 1 9 3 2 8 7A	=

4
14

1016

Building a heap Example
� i =	2;	recursively	call	MAX-HEAFIFY(A,	largest)

42

4

1 9 3

2 8 7

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 16 10 14 1 9 3 2 8 7A	=

4
14

1016

Building a heap Example
� i =	2

43

4

7 9 3

2 8 1

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 16 10 14 7 9 3 2 8 1A	=

4
14

1016

Building a heap Example
� i =	1

44

4

7 9 3

2 8 1

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 16 10 14 7 9 3 2 8 1A	=

4
14

1016

Building a heap Example
� i =	1;	call	MAX-HEAFIFY(A,	i)

45

4

7 9 3

2 8 1

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

4 16 10 14 7 9 3 2 8 1A	=

4
14

1016

Building a heap Example
� i =	1

46

4

7 9 3

2 8 1

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

16 4 10 14 7 9 3 2 8 1A	=

4
14

10

16

Building a heap Example
� i =	1;	recursively	call	MAX-HEAFIFY(A,	largest)

47

4

7 9 3

2 8 1

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

16 4 10 14 7 9 3 2 8 1A	=

4

10

16

14

Building a heap Example
� i =	1

48

4 7 9 3

2 8 1

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

16 14 10 4 7 9 3 2 8 1A	=

4

10

16

14

Building a heap Example
� i =	1;	recursively	call	MAX-HEAFIFY(A,	largest)

49

4 7 9 3

2 8 1

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

16 14 10 4 7 9 3 2 8 1A	=

4

10

16

14

Building a heap Example
� The	max-heap	after	BUILD-MAX-HEAP finishes

50

8 7 9 3

2 4 1

1

2 3

5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

16 14 10 8 7 9 3 2 4 1A	=

4

10

16

14

Quiz – 3
� Using	the	previous	figure	model,	illustrate	the	
operation	of	BUILD-MAX-HEAP on	the	array	
A	=	á5,	3,	17,	10,	84,	19,	6,	22,	9ñ

51

Quiz – 3
� Using	the	previous	figure	model,	illustrate	the	
operation	of	BUILD-MAX-HEAP on	the	array	
A	=	á5,	3,	17,	10,	84,	19,	6,	22,	9ñ

52

6

9

1

2 3

5 6 7

8 9

1 2 3 4 5 6 7 8 9

5 3 17 10 84 19 6 22 9A	=

4

17

5

3

10 84 19

22

Heapsort algorithm
� Heapsort algorithm

� Build	a	max-heap	on	the	input	array	A[1..n] (n = A.length)
� Root	A[1]:	the	maximum	element	of	the	array	A
� Put	A[1] into	its	correct	final	position	A[n]
� Discard	node	from	the	heap:	A.heap-size – 1
� Restore	the	max-heap	property
� Repeats	this	process	until	A.heap-size = 2

53

Heapsort algorithm
HEAPSORT(A)

1. BUILD-MAX-HEAP(A) O(n)
2. for i = A.length downto 2 n – 1
3. exchange A[1] with A[i] n – 1
4. A.heap-size = A.heap-size – 1 n – 1
5. MAX-HEAPIFY(A, 1) O(lg n)

Thus the total time taken by HeapSort()
= O(n) + (n – 1) O(lg n)
= O(n) + O(n lg n)
= O(n lg n)

54

Example
� Operation	of	Heapsort

8 7 9 3

2 4 1

14 10

16

8

4 7 9 3

2 1

14

10

16
i

55

Example
� Operation	of	Heapsort

8 9

4 7 1 3

2 14

10

16
i

9

8 3

4 7 1 2

1410 16
i

56

Example
� Operation	of	Heapsort

8

7 3

4 2 1 9

1410 16

i

7

4 3

1 2 8 9

1410 16

i

57

Example
� Operation	of	Heapsort

4

2 3

1 7 8 9

1410 16

i

3

2 1

4 7 8 9

1410 16

i

58

Example
� Operation	of	Heapsort

2

1 3

4 7 8 9

1410 16

i
1

2 3

4 7 8 9

1410 16

i

A 1 2 3 4 7 8 9 10 14 16

59

