
Parallel Programming
CPSC 6109 - Algorithms Analysis and Design

Dr. Hyrum D. Carroll

March 27, 2024

Parallel Algorithms Module Objectives

The goal of this module is that by the end of it you will be able to:

1. Appreciate that modern computers have multiple processing
units

2. Describe the role of a concurrency platform

3. Calculate speedup given performance results

4. Identify a race condition in code and explain why it is a race
condition

5. Describe how and why an algorithm is parallized (for example,
matrix multiple and mergesort)

Parallel Systems

We have access to several parallel architectures:

I Multicore machines

I GPUs (graphics processing units) with multiple processors

I Clusters

I Cloud computing

Parallel Systems

We have access to several parallel architectures:

I Multicore machines

I GPUs (graphics processing units) with multiple processors

I Clusters

I Cloud computing

Which ones have you used?

Parallelism in Your Computers

How many cores does your computer have?

Parallelism in Your Computers

How many cores does your computer have?
How many cores does your computer (your phone) have?

Parallelism in Your Computers

Source: Advanced Micro Devices

Parallelism in Your Computers

Source: OpenSPARC, Oracle.com

Memory Models

Two memory models:

1. Shared memory

2. Distributed memory

Memory Models

Two memory models:

1. Shared memory
I All cores can access all of the memory

2. Distributed memory

Memory Models

Two memory models:

1. Shared memory
I All cores can access all of the memory

2. Distributed memory
I Cores have private memory, need to send messages to other

cores

Memory Models

Two memory models:

1. Shared memory
I All cores can access all of the memory

2. Distributed memory
I Cores have private memory, need to send messages to other

cores

Both memory models exist in practice

Shared Memory

Two main features of a the shared memory model:

1. Multiple threads

2. Concurrency platform handles scheduling (including
load-balancing)

Parallel Programming in a Nutshell

Load balancing vs Communication
This is the eternal problem in parallel computing. The basic
approaches to this problem include:

I Data partitioning - moving different parts of the data set
across several nodes

I Task partitioning - give separate tasks to different nodes

Definition of Terms

Parallel processing terms:

I node - a box usually containing processors, local memory,
disks and network connection

I cluster - a group of nodes networked together

I speedup: Sp = T1
Tp

I efficiency:
Sp
p = T1

pTp

(Ti is the execution time for i processors, p is the number of
processors)

Speedup

I Adding more processors does not always improve the speed a
code runs.

I Usually, better speedup can be found by increasing the
problem size, at least to a point.

I The non-parallel part of a code generally scales linearly with
the problem size. The parallel part usually scales with the
problem size to some power.

I Generally increasing the problem size without increasing the
node number helps performance.

Scalability

Good parallel algorithms run faster when more nodes are available.
In the best case, doubling the number of nodes decreases the
execution time by a factor of two.
One way to consider scaling of a code is Amdahl’s law:

Sp =
1

α + 1−α
p

where α is the portion of the code which cannot be parallelized
and p is the number of processors.
This is a simplification, but-
Speedup is limited by the slowest portion of the code.

Amdahl’s Law

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Sp
ee

du
p

Number of Processors

linear
alpha: 0.01
alpha: 0.05
alpha: 0.10
alpha: 0.25
alpha: 0.50
alpha: 0.90

Communication

I Communication between nodes takes a great deal of time.

I Typically you can do thousands of computations in the time it
takes to pass the simplest message.

I The time it takes for a message to be passed is limited by
bandwidth b and latency l . To pass a message of size s, you
need

s

b
+ l

(Assuming b, l , and s are in consistent units.)

Introduction to OpenMP

OpenMP is a concurrency platform.
It is as a set of simple program additions to make codes run
efficiently on shared memory computers. The formal API for
OpenMP is only about 50 pages long, and contains compiler
directives and library functions.

http://www.llnl.gov/computing/tutorials/openMP/

OpenMP Threads

OpenMP uses threads for parallel programming

I Forks and joins are used for most of the internal programming

I Speedup is achieved by the operating system splitting the
threads across multiple CPUs.

I New threads are created explicitly by the program directives
dynamically.

Forks and Joins

Source: Wikipedia user A1

Goals of OpenMP - from LLNL

I Standardization

I Lean and Mean - only 3-4 directives

I Ease of use

I Portability - F77, F90, F95, C, C++

Goals of OpenMP - from LLNL

I Standardization

I Lean and Mean - only 3-4 directives

I Ease of use

I Portability - F77, F90, F95, C, C++

Note: You can not use OpenMP and Java together

OpenMP Programming Model - from LLNL

I Shared Memory, thread based

I Explicit Parallelism

I Fork-Join Model

I Compiler Directives

I Nested Parallelism Support - in most implementations

I Dynamic Threads

I Not tied to I/O

Explicit Parallelism

I You must tell the computer what sections of code to
parallelize using complier directives.

I The compiler directives vary between languages, but are
ignored when OpenMP flags are not set with the compiler.

I Codes written with OpenMP can run easily on serial machines.

Environment and Library Routines

I Some environmental variables are needed to make the code
execute using the correct number of threads

I Some library routines allow the programmer to set and access
system variables

Not Message Passing

This is NOT a set of message passing routines. Instead, you give
directives to the compiler of what parts of the code can be
executed in parallel.
In some ways, OpenMP is a set of directives to tell the compiler
how to more efficiently handle loops.

General Syntax

I Fortran:

!$OMP <directive>

do useful stuff

!$OMP end <directive>

I C/C++:

#pragma omp <directive-name> clause

{

do useful stuff in a structured block

}

A Trivial Example

Basic Code

1 program t r i v i a l
2 p r i n t ∗ , ’ H e l l o World ! ’
3 end program

% gfortran trivial.f90

% ./a.out

Hello World!

OMP Additions

1 program t r i v i a l
2

3 !$OMP PARALLEL
4 p r i n t ∗ , ’ H e l l o World ! ’
5 !$OMP END PARALLEL
6

7 end program t r i v i a l

% gfortran trivialOpenMP.f90

% ./a.out

Hello World!

What went wrong?

A Trivial Example

Basic Code

1 program t r i v i a l
2 p r i n t ∗ , ’ H e l l o World ! ’
3 end program

% gfortran trivial.f90

% ./a.out

Hello World!

OMP Additions

1 program t r i v i a l
2

3 !$OMP PARALLEL
4 p r i n t ∗ , ’ H e l l o World ! ’
5 !$OMP END PARALLEL
6

7 end program t r i v i a l

% gfortran trivialOpenMP.f90

% ./a.out

Hello World!

What went wrong?

Execution of the Trivial Example

% gfortran trivialOpenMP.f90 -fopenmp

% ./a.out

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

% export OMP_NUM_THREADS=3

% ./a.out

Hello World!

Hello World!

Hello World!

Thread ID

1 program t r i v i a l 1
2 i m p l i c i t none
3 i n t e g e r : : OMP GET THREAD NUM, OMP GET MAX THREADS
4 i n t e g e r : : t i d , n t h r e ad s
5 !$OMP PARALLEL PRIVATE(nth reads , t i d)
6 t i d = OMP GET THREAD NUM()
7 n th r e ad s = OMP GET MAX THREADS()
8 p r i n t ∗ , ’ H e l l o World ! from ’ , t i d , n t h r e ad s
9 !$OMP END PARALLEL

10 end program

Note the PRIVATE key word, indicating that all threads have their
own copy of the variable.

Thread ID (2)

% gfortran -fopenmp trivial1.f90

% ./a.out

Hello World! from 0 1

Hello World! from 2 1

Hello World! from 3 1

Hello World! from 4 1

Hello World! from 1 1

Hello World! from 7 1

Hello World! from 5 1

Hello World! from 6 1

Thread ID

1 program t r i v i a l 2
2 i m p l i c i t none
3 i n t e g e r : : OMP GET THREAD NUM, OMP GET MAX THREADS
4 i n t e g e r : : t i d , n t h r e ad s
5 n th r e ad s = OMP GET MAX THREADS()
6 !$OMP PARALLEL PRIVATE(t i d)
7 t i d = OMP GET THREAD NUM()
8 p r i n t ∗ , ’ H e l l o World ! from ’ , t i d , n t h r e ad s
9 !$OMP END PARALLEL

10 end program

Note that nthreads is outside of the OMP directives

Thread ID (2)

% gfortran -fopenmp trivial2.f90

% ./a.out

Hello World! from 5 8

Hello World! from 0 8

Hello World! from 1 8

Hello World! from 2 8

Hello World! from 7 8

Hello World! from 3 8

Hello World! from 4 8

Hello World! from 6 8

Parallelizing Loops

To parallelize a loop, you need to help the compiler figure out the
most efficient way to use threads. There are simple defaults, but
giving it more details can help efficiency.
The basic directives are:

!$OMP PARALLEL

!$OMP DO

some parallel loop

!$OMP END DO

!$OMP END PARALLEL

A Simple OMP Example
omptest1

1 program omptest1
2 i n t e g e r , paramete r : : n = 10000
3 i n t e g e r , paramete r : : db l e = s e l e c t e d r e a l k i n d

(15 ,307)
4 r e a l (k i nd=db l e) , d imens ion (n) : : a
5 i n t e g e r : : i , j
6 !$OMP PARALLEL
7 !$OMP DO
8 do j = 1 , 100000
9 do i = 1 , n

10 a (i) = l og (r e a l (i)) + j
11 enddo
12 enddo
13 !$OMP END DO
14 !$OMP END PARALLEL
15 p r i n t ∗ , a (1)
16 end program omptest1

Results
omptest1

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 1 2 3 4 5 6 7 8

Se
co

nd
s

OMP_NUM_THREADS

real

Results
omptest1

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 1 2 3 4 5 6 7 8

Se
co

nd
s

OMP_NUM_THREADS

real
user

Results
omptest1

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 3 4 5 6 7 8

Sp
ee

du
p

OMP_NUM_THREADS

ideal

Results
omptest1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

Ef
fic

ie
nc

y

OMP_NUM_THREADS

Combining Directives

You do not have to have a separate directive on each line. For
example,

!$OMP PARALLEL

!$OMP DO

!$OMP PRIVATE(NTHREADS, TID)

Becomes

!$OMP PARALLEL DO PRIVATE(NTHREADS, TID)

Numerical Integration

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

-0.4 -0.2 0 0.2 0.4

y

x

4/(1+x**2)

Numerical Integration

Integrating

π =

∫ 1/2

−1/2

4

1 + x2
dx (1)

We can approximate this integral using Simpson’s algorithms

I Input the number of partitions to be used

I Divide the domain into n partitions

I Evaluate the function at each partition

I Multiply the function evaluation times the width of the
function to find a differential area

I Add the differential areas together

I Output the result

Parallel Integration

In parallel, the problem is nearly the same.

I Have processing element (PE) zero, get the number of
partitions, n

I Determine the number of PEs: m

I Divide the domain into n
m partitions on each PE

I Evaluate the function at each partition

I Multiply the function evaluation times the width of the
function to find a differential area

I Add the differential areas together across all the PEs

I On PE zero, output the result

Simple Code to Calculate PI (serial version)

1 program reduce
2 i n t e g e r : : i , num steps
3 doub l e p r e c i s i o n : : x , p i , s tep , sum
4 sum =0.0d0 ; n s t e p s = 10000
5 s t ep = 1 .0 d0 / db l e (n s t e p s)
6 do i = 1 , n s t e p s
7 x = (db l e (i) + 0 .5 d0) ∗ s t ep
8 sum = sum + 4.0 d0 / (1 . 0 d0 + x∗x)
9 enddo

10 p i = s t ep ∗ sum
11 p r i n t ∗ , ” Es t imate o f Pi w i th ” , ns teps , ” s t e p s i s ”

, p i
12 end program reduce

$./reduce

Estimate of Pi with 10000 steps is 3.1413926444243838

Simple Code to Calculate PI (parallel version)

1 program reduceOMP
2 i n t e g e r : : i , num steps
3 doub l e p r e c i s i o n : : x , p i , s tep , sum
4 sum =0.0d0 ; num steps = 10000
5 s t ep = 1 .0 d0 / db l e (num steps)
6 !$OMP PARALLEL DO
7 do i = 1 , num steps
8 x = (db l e (i) + 0 .5 d0) ∗ s t ep
9 sum = sum + 4.0 d0 / (1 . 0 d0 + x∗x)

10 enddo
11 !$OMP END PARALLEL DO
12 p i = s t ep ∗ sum
13 p r i n t ∗ , ” Es t imate o f Pi w i th ” , num steps , ” s t e p s

i s ” , p i
14 end program reduceOMP

$ gfortran -fopenmp reduceOMP.f90 -o reduceOMP

$./reduceOMP

Estimate of Pi with 10000 steps is 7.5588335781770253

What happened?

Simple Code to Calculate PI (parallel version)

1 program reduceOMP
2 i n t e g e r : : i , num steps
3 doub l e p r e c i s i o n : : x , p i , s tep , sum
4 sum =0.0d0 ; num steps = 10000
5 s t ep = 1 .0 d0 / db l e (num steps)
6 !$OMP PARALLEL DO
7 do i = 1 , num steps
8 x = (db l e (i) + 0 .5 d0) ∗ s t ep
9 sum = sum + 4.0 d0 / (1 . 0 d0 + x∗x)

10 enddo
11 !$OMP END PARALLEL DO
12 p i = s t ep ∗ sum
13 p r i n t ∗ , ” Es t imate o f Pi w i th ” , num steps , ” s t e p s

i s ” , p i
14 end program reduceOMP

$ gfortran -fopenmp reduceOMP.f90 -o reduceOMP

$./reduceOMP

Estimate of Pi with 10000 steps is 7.5588335781770253

What happened?

Race Conditions

A race condition exists when two processing units are accessing the
same resource and one or both of them are writing to it.
Example from Introduction to Algorithms:

788 Chapter 27 Multithreaded Algorithms

eral others, and the North American Blackout of 2003, which left over 50 million
people without power. These pernicious bugs are notoriously hard to find. You can
run tests in the lab for days without a failure only to discover that your software
sporadically crashes in the field.

A determinacy race occurs when two logically parallel instructions access the
same memory location and at least one of the instructions performs a write. The
following procedure illustrates a race condition:

RACE-EXAMPLE. /

1 x D 0
2 parallel for i D 1 to 2
3 x D x C 1
4 print x

After initializing x to 0 in line 1, RACE-EXAMPLE creates two parallel strands,
each of which increments x in line 3. Although it might seem that RACE-
EXAMPLE should always print the value 2 (its serialization certainly does), it could
instead print the value 1. Let’s see how this anomaly might occur.

When a processor increments x, the operation is not indivisible, but is composed
of a sequence of instructions:
1. Read x from memory into one of the processor’s registers.
2. Increment the value in the register.
3. Write the value in the register back into x in memory.
Figure 27.5(a) illustrates a computation dag representing the execution of RACE-
EXAMPLE, with the strands broken down to individual instructions. Recall that
since an ideal parallel computer supports sequential consistency, we can view the
parallel execution of a multithreaded algorithm as an interleaving of instructions
that respects the dependencies in the dag. Part (b) of the figure shows the values
in an execution of the computation that elicits the anomaly. The value x is stored
in memory, and r1 and r2 are processor registers. In step 1, one of the processors
sets x to 0. In steps 2 and 3, processor 1 reads x from memory into its register r1

and increments it, producing the value 1 in r1. At that point, processor 2 comes
into the picture, executing instructions 4–6. Processor 2 reads x from memory into
register r2; increments it, producing the value 1 in r2; and then stores this value
into x, setting x to 1. Now, processor 1 resumes with step 7, storing the value 1
in r1 into x, which leaves the value of x unchanged. Therefore, step 8 prints the
value 1, rather than 2, as the serialization would print.

We can see what has happened. If the effect of the parallel execution were that
processor 1 executed all its instructions before processor 2, the value 2 would be

Race Condition Examples

Identify the race condition (if any) from example from Introduction
to Algorithms:

790 Chapter 27 Multithreaded Algorithms

As an example of how easy it is to generate code with races, here is a faulty
implementation of multithreaded matrix-vector multiplication that achieves a span
of ‚.lg n/ by parallelizing the inner for loop:
MAT-VEC-WRONG.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 parallel for j D 1 to n
7 yi D yi C aij xj

8 return y

This procedure is, unfortunately, incorrect due to races on updating yi in line 7,
which executes concurrently for all n values of j . Exercise 27.1-6 asks you to give
a correct implementation with ‚.lg n/ span.

A multithreaded algorithm with races can sometimes be correct. As an exam-
ple, two parallel threads might store the same value into a shared variable, and it
wouldn’t matter which stored the value first. Generally, however, we shall consider
code with races to be illegal.

A chess lesson
We close this section with a true story that occurred during the development of
the world-class multithreaded chess-playing program ?Socrates [81], although the
timings below have been simplified for exposition. The program was prototyped
on a 32-processor computer but was ultimately to run on a supercomputer with 512
processors. At one point, the developers incorporated an optimization into the pro-
gram that reduced its running time on an important benchmark on the 32-processor
machine from T32 D 65 seconds to T 0

32 D 40 seconds. Yet, the developers used
the work and span performance measures to conclude that the optimized version,
which was faster on 32 processors, would actually be slower than the original ver-
sion on 512 processsors. As a result, they abandoned the “optimization.”

Here is their analysis. The original version of the program had work T1 D 2048
seconds and span T1 D 1 second. If we treat inequality (27.4) as an equation,
TP D T1=P C T1, and use it as an approximation to the running time on P pro-
cessors, we see that indeed T32 D 2048=32 C 1 D 65. With the optimization, the
work became T 0

1 D 1024 seconds and the span became T 0
1 D 8 seconds. Again

using our approximation, we get T 0
32 D 1024=32C 8 D 40.

The relative speeds of the two versions switch when we calculate the running
times on 512 processors, however. In particular, we have T512 D 2048=512C1 D 5

27.2 Multithreaded matrix multiplication 793

P-SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 parallel for i D 1 to n
4 parallel for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik " bkj

8 return C

To analyze this algorithm, observe that since the serialization of the algorithm is
just SQUARE-MATRIX-MULTIPLY, the work is therefore simply T1.n/ D ‚.n3/,
the same as the running time of SQUARE-MATRIX-MULTIPLY. The span is
T1.n/ D ‚.n/, because it follows a path down the tree of recursion for the
parallel for loop starting in line 3, then down the tree of recursion for the parallel
for loop starting in line 4, and then executes all n iterations of the ordinary for loop
starting in line 6, resulting in a total span of ‚.lg n/ C ‚.lg n/ C ‚.n/ D ‚.n/.
Thus, the parallelism is ‚.n3/=‚.n/ D ‚.n2/. Exercise 27.2-3 asks you to par-
allelize the inner loop to obtain a parallelism of ‚.lg n/, which you cannot do
straightforwardly using parallel for, because you would create races.

A divide-and-conquer multithreaded algorithm for matrix multiplication
As we learned in Section 4.2, we can multiply n ! n matrices serially in time
‚.nlg 7/ D O.n2:81/ using Strassen’s divide-and-conquer strategy, which motivates
us to look at multithreading such an algorithm. We begin, as we did in Section 4.2,
with multithreading a simpler divide-and-conquer algorithm.

Recall from page 77 that the SQUARE-MATRIX-MULTIPLY-RECURSIVE proce-
dure, which multiplies two n ! n matrices A and B to produce the n ! n matrix C ,
relies on partitioning each of the three matrices into four n=2 ! n=2 submatrices:

A D
!

A11 A12

A21 A22

"
; B D

!
B11 B12

B21 B22

"
; C D

!
C11 C12

C21 C22

"
:

Then, we can write the matrix product as
!

C11 C12

C21 C22

"
D

!
A11 A12

A21 A22

"!
B11 B12

B21 B22

"

D
!

A11B11 A11B12

A21B11 A21B12

"
C

!
A12B21 A12B22

A22B21 A22B22

"
: (27.6)

Thus, to multiply two n!n matrices, we perform eight multiplications of n=2!n=2
matrices and one addition of n!n matrices. The following pseudocode implements

Race Condition Examples

Identify the race condition (if any) from example from Introduction
to Algorithms:

790 Chapter 27 Multithreaded Algorithms

As an example of how easy it is to generate code with races, here is a faulty
implementation of multithreaded matrix-vector multiplication that achieves a span
of ‚.lg n/ by parallelizing the inner for loop:
MAT-VEC-WRONG.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 parallel for j D 1 to n
7 yi D yi C aij xj

8 return y

This procedure is, unfortunately, incorrect due to races on updating yi in line 7,
which executes concurrently for all n values of j . Exercise 27.1-6 asks you to give
a correct implementation with ‚.lg n/ span.

A multithreaded algorithm with races can sometimes be correct. As an exam-
ple, two parallel threads might store the same value into a shared variable, and it
wouldn’t matter which stored the value first. Generally, however, we shall consider
code with races to be illegal.

A chess lesson
We close this section with a true story that occurred during the development of
the world-class multithreaded chess-playing program ?Socrates [81], although the
timings below have been simplified for exposition. The program was prototyped
on a 32-processor computer but was ultimately to run on a supercomputer with 512
processors. At one point, the developers incorporated an optimization into the pro-
gram that reduced its running time on an important benchmark on the 32-processor
machine from T32 D 65 seconds to T 0

32 D 40 seconds. Yet, the developers used
the work and span performance measures to conclude that the optimized version,
which was faster on 32 processors, would actually be slower than the original ver-
sion on 512 processsors. As a result, they abandoned the “optimization.”

Here is their analysis. The original version of the program had work T1 D 2048
seconds and span T1 D 1 second. If we treat inequality (27.4) as an equation,
TP D T1=P C T1, and use it as an approximation to the running time on P pro-
cessors, we see that indeed T32 D 2048=32 C 1 D 65. With the optimization, the
work became T 0

1 D 1024 seconds and the span became T 0
1 D 8 seconds. Again

using our approximation, we get T 0
32 D 1024=32C 8 D 40.

The relative speeds of the two versions switch when we calculate the running
times on 512 processors, however. In particular, we have T512 D 2048=512C1 D 5

27.2 Multithreaded matrix multiplication 793

P-SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 parallel for i D 1 to n
4 parallel for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik " bkj

8 return C

To analyze this algorithm, observe that since the serialization of the algorithm is
just SQUARE-MATRIX-MULTIPLY, the work is therefore simply T1.n/ D ‚.n3/,
the same as the running time of SQUARE-MATRIX-MULTIPLY. The span is
T1.n/ D ‚.n/, because it follows a path down the tree of recursion for the
parallel for loop starting in line 3, then down the tree of recursion for the parallel
for loop starting in line 4, and then executes all n iterations of the ordinary for loop
starting in line 6, resulting in a total span of ‚.lg n/ C ‚.lg n/ C ‚.n/ D ‚.n/.
Thus, the parallelism is ‚.n3/=‚.n/ D ‚.n2/. Exercise 27.2-3 asks you to par-
allelize the inner loop to obtain a parallelism of ‚.lg n/, which you cannot do
straightforwardly using parallel for, because you would create races.

A divide-and-conquer multithreaded algorithm for matrix multiplication
As we learned in Section 4.2, we can multiply n ! n matrices serially in time
‚.nlg 7/ D O.n2:81/ using Strassen’s divide-and-conquer strategy, which motivates
us to look at multithreading such an algorithm. We begin, as we did in Section 4.2,
with multithreading a simpler divide-and-conquer algorithm.

Recall from page 77 that the SQUARE-MATRIX-MULTIPLY-RECURSIVE proce-
dure, which multiplies two n ! n matrices A and B to produce the n ! n matrix C ,
relies on partitioning each of the three matrices into four n=2 ! n=2 submatrices:

A D
!

A11 A12

A21 A22

"
; B D

!
B11 B12

B21 B22

"
; C D

!
C11 C12

C21 C22

"
:

Then, we can write the matrix product as
!

C11 C12

C21 C22

"
D

!
A11 A12

A21 A22

"!
B11 B12

B21 B22

"

D
!

A11B11 A11B12

A21B11 A21B12

"
C

!
A12B21 A12B22

A22B21 A22B22

"
: (27.6)

Thus, to multiply two n!n matrices, we perform eight multiplications of n=2!n=2
matrices and one addition of n!n matrices. The following pseudocode implements

In MAT-VEC-WRONG, multiple threads are writing to yi

Race Condition Examples

Identify the race condition (if any) from example from Introduction
to Algorithms:

790 Chapter 27 Multithreaded Algorithms

As an example of how easy it is to generate code with races, here is a faulty
implementation of multithreaded matrix-vector multiplication that achieves a span
of ‚.lg n/ by parallelizing the inner for loop:
MAT-VEC-WRONG.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 parallel for j D 1 to n
7 yi D yi C aij xj

8 return y

This procedure is, unfortunately, incorrect due to races on updating yi in line 7,
which executes concurrently for all n values of j . Exercise 27.1-6 asks you to give
a correct implementation with ‚.lg n/ span.

A multithreaded algorithm with races can sometimes be correct. As an exam-
ple, two parallel threads might store the same value into a shared variable, and it
wouldn’t matter which stored the value first. Generally, however, we shall consider
code with races to be illegal.

A chess lesson
We close this section with a true story that occurred during the development of
the world-class multithreaded chess-playing program ?Socrates [81], although the
timings below have been simplified for exposition. The program was prototyped
on a 32-processor computer but was ultimately to run on a supercomputer with 512
processors. At one point, the developers incorporated an optimization into the pro-
gram that reduced its running time on an important benchmark on the 32-processor
machine from T32 D 65 seconds to T 0

32 D 40 seconds. Yet, the developers used
the work and span performance measures to conclude that the optimized version,
which was faster on 32 processors, would actually be slower than the original ver-
sion on 512 processsors. As a result, they abandoned the “optimization.”

Here is their analysis. The original version of the program had work T1 D 2048
seconds and span T1 D 1 second. If we treat inequality (27.4) as an equation,
TP D T1=P C T1, and use it as an approximation to the running time on P pro-
cessors, we see that indeed T32 D 2048=32 C 1 D 65. With the optimization, the
work became T 0

1 D 1024 seconds and the span became T 0
1 D 8 seconds. Again

using our approximation, we get T 0
32 D 1024=32C 8 D 40.

The relative speeds of the two versions switch when we calculate the running
times on 512 processors, however. In particular, we have T512 D 2048=512C1 D 5

27.2 Multithreaded matrix multiplication 793

P-SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 parallel for i D 1 to n
4 parallel for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik " bkj

8 return C

To analyze this algorithm, observe that since the serialization of the algorithm is
just SQUARE-MATRIX-MULTIPLY, the work is therefore simply T1.n/ D ‚.n3/,
the same as the running time of SQUARE-MATRIX-MULTIPLY. The span is
T1.n/ D ‚.n/, because it follows a path down the tree of recursion for the
parallel for loop starting in line 3, then down the tree of recursion for the parallel
for loop starting in line 4, and then executes all n iterations of the ordinary for loop
starting in line 6, resulting in a total span of ‚.lg n/ C ‚.lg n/ C ‚.n/ D ‚.n/.
Thus, the parallelism is ‚.n3/=‚.n/ D ‚.n2/. Exercise 27.2-3 asks you to par-
allelize the inner loop to obtain a parallelism of ‚.lg n/, which you cannot do
straightforwardly using parallel for, because you would create races.

A divide-and-conquer multithreaded algorithm for matrix multiplication
As we learned in Section 4.2, we can multiply n ! n matrices serially in time
‚.nlg 7/ D O.n2:81/ using Strassen’s divide-and-conquer strategy, which motivates
us to look at multithreading such an algorithm. We begin, as we did in Section 4.2,
with multithreading a simpler divide-and-conquer algorithm.

Recall from page 77 that the SQUARE-MATRIX-MULTIPLY-RECURSIVE proce-
dure, which multiplies two n ! n matrices A and B to produce the n ! n matrix C ,
relies on partitioning each of the three matrices into four n=2 ! n=2 submatrices:

A D
!

A11 A12

A21 A22

"
; B D

!
B11 B12

B21 B22

"
; C D

!
C11 C12

C21 C22

"
:

Then, we can write the matrix product as
!

C11 C12

C21 C22

"
D

!
A11 A12

A21 A22

"!
B11 B12

B21 B22

"

D
!

A11B11 A11B12

A21B11 A21B12

"
C

!
A12B21 A12B22

A22B21 A22B22

"
: (27.6)

Thus, to multiply two n!n matrices, we perform eight multiplications of n=2!n=2
matrices and one addition of n!n matrices. The following pseudocode implements

In MAT-VEC-WRONG, multiple threads are writing to yi In
P-SQUARE-MATRIX-MULTIPLY, only one thread is writing to ci ,j

Reductions

Because the loops are executing separately, you may wish to
combine the results from different threads to a final answer. You
need to use reduction to make this work.

$!OMP PARALLEL PRIVATE(X) REDUCTION(+:SUM)

OpenMP Modifications

1 program reduceOMP2
2 i n t e g e r : : i , num steps
3 doub l e p r e c i s i o n : : x , p i , s tep , sum
4 sum =0.0d0 ; n s t e p s = 100000000
5 s t ep = 1 .0 d0 / db l e (n s t e p s)
6 !$OMP PARALLEL DO PRIVATE(X) REDUCTION(+:SUM)
7 do i = 1 , n s t e p s
8 x = (db l e (i) + 0 .5 d0) ∗ s t ep
9 sum = sum + 4.0 d0 / (1 . 0 d0 + x∗x)

10 enddo
11 !$OMP END PARALLEL DO
12 p i = s t ep ∗ sum
13 p r i n t ∗ , ” Es t imate o f Pi w i th ” , ns teps , ” s t e p s i s ”

, p i
14 end program reduceOMP2

$ gfortran -fopenmp reduceOMP2.f90 -o reduceOMP2

$./reduceOMP2

Estimate of Pi with 10000 steps is 3.1413926444243732

Results
reduceOMP2

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

Se
co

nd
s

OMP_NUM_THREADS

real

Results
reduceOMP2

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

Se
co

nd
s

OMP_NUM_THREADS

real
user

Results
reduceOMP2

 0
 2
 4
 6
 8

 10
 12
 14
 16

 2 4 6 8 10 12 14 16

Sp
ee

du
p

OMP_NUM_THREADS

ideal

Results
reduceOMP2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

Ef
fic

ie
nc

y

OMP_NUM_THREADS

Loop Splitting

One of the key ideas to remember is that loops often contain
several operations that can be split. Taking an example from the
Patterns in Parallel Programming book, imagine we have a loop
with two functions:

I BIG COMPUTATION - a big computation the executes
independently on each element in the loop

I COMBINE - an element that cannot be parallelized and must
execute in order

Loop Splitting

do i = 1, nsteps

x = BIG_COMPUTATION(i)

call COMBINE(x,answer)

enddo

can be split into

do i = 1, nsteps

x(i) = BIG_COMPUTATION(i)

enddo

do i = 1, nsteps

call COMBINE(x(i),answer)

enddo

Using OpenMP in Loop Splitting

!$OMP PARALLEL DO PRIVATE(I)

do i = 1, nsteps

x(i) = BIG_COMPUTATION(i)

enddo

!$OMP END PARALLEL DO

do i = 1, nsteps

call COMBINE(x(i),answer)

enddo

Controlling Loops

There are many options for controlling the execution of threads.

!$OMP DO SCHEDULE(TYPE,integer)

I schedule(static[,chunk]) - groups of size chunk statically
assigned in a round-robin fashion

I schedule(dynamic[,chunk]) - threads dynamically grab work as
it is completed

I schedule(guided[,chunk]) - chunk size is reduced automatically
during iteration toward a minimum level of chunk

I schedule(runtime) - checks the OMP SCHEDULE
environmental variable

Controlling Loops

integer, parameter :: chunk = 10

!$OMP PARALLEL PRIVATE(i,j,z,c,it) DEFAULT(SHARED)

!$OMP DO SCHEDULE(DYNAMIC,CHUNK)

do i = 1, n

do j = 1, n

...

Controlling Loops

setenv OMP_SCHEDULE static

11.477u 0.012s 0:08.24 139.3%

setenv OMP_SCHEDULE dynamic

11.239u 0.006s 0:05.67 198.0%

setenv OMP_SCHEDULE guided

11.453u 0.005s 0:06.52 175.6%

setenv OMP_SCHEDULE static,20

11.439u 0.028s 0:05.89 194.3%

no omp

11.280u 0.004s 0:11.28 100.0%

Examples

Multithread Matrix Multiplication

To multiply matrix A by matrix B to get matrix C we can divide
the matrixes into submatrices:

A =

(
A11 A12

A21 A22

)
,B =

(
B11 B12

B21 B22

)
,C =

(
C11 C12

C21 C22

)
(

C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
(2)

(
C11 C12

C21 C22

)
=

(
A11B11 A11B12

A21B11 A21B12

)(
A12B21 A12B22

A22B21 A22B22

)
(3)

Multithread Matrix Multiplication Pseudocode

794 Chapter 27 Multithreaded Algorithms

this divide-and-conquer strategy using nested parallelism. Unlike the SQUARE-
MATRIX-MULTIPLY-RECURSIVE procedure on which it is based, P-MATRIX-
MULTIPLY-RECURSIVE takes the output matrix as a parameter to avoid allocating
matrices unnecessarily.

P-MATRIX-MULTIPLY-RECURSIVE.C; A; B/

1 n D A:rows
2 if n == 1
3 c11 D a11b11

4 else let T be a new n ! n matrix
5 partition A, B , C , and T into n=2 ! n=2 submatrices

A11; A12; A21; A22; B11; B12; B21; B22; C11; C12; C21; C22;
and T11; T12; T21; T22; respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE.C11; A11; B11/
7 spawn P-MATRIX-MULTIPLY-RECURSIVE.C12; A11; B12/
8 spawn P-MATRIX-MULTIPLY-RECURSIVE.C21; A21; B11/
9 spawn P-MATRIX-MULTIPLY-RECURSIVE.C22; A21; B12/

10 spawn P-MATRIX-MULTIPLY-RECURSIVE.T11; A12; B21/
11 spawn P-MATRIX-MULTIPLY-RECURSIVE.T12; A12; B22/
12 spawn P-MATRIX-MULTIPLY-RECURSIVE.T21; A22; B21/
13 P-MATRIX-MULTIPLY-RECURSIVE.T22; A22; B22/
14 sync
15 parallel for i D 1 to n
16 parallel for j D 1 to n
17 cij D cij C tij

Line 3 handles the base case, where we are multiplying 1 ! 1 matrices. We handle
the recursive case in lines 4–17. We allocate a temporary matrix T in line 4, and
line 5 partitions each of the matrices A, B , C , and T into n=2 ! n=2 submatrices.
(As with SQUARE-MATRIX-MULTIPLY-RECURSIVE on page 77, we gloss over
the minor issue of how to use index calculations to represent submatrix sections
of a matrix.) The recursive call in line 6 sets the submatrix C11 to the submatrix
product A11B11, so that C11 equals the first of the two terms that form its sum in
equation (27.6). Similarly, lines 7–9 set C12, C21, and C22 to the first of the two
terms that equal their sums in equation (27.6). Line 10 sets the submatrix T11 to
the submatrix product A12B21, so that T11 equals the second of the two terms that
form C11’s sum. Lines 11–13 set T12, T21, and T22 to the second of the two terms
that form the sums of C12, C21, and C22, respectively. The first seven recursive
calls are spawned, and the last one runs in the main strand. The sync statement in
line 14 ensures that all the submatrix products in lines 6–13 have been computed,

Source: Introduction to Algorithms, 3rd Edition

Multithread Mergesort Pseudocode

27.3 Multithreaded merge sort 803

P-MERGE-SORT.A; p; r; B; s/

1 n D r ! p C 1
2 if n == 1
3 BŒs! D AŒp!
4 else let T Œ1 : : n! be a new array
5 q D b.p C r/=2c
6 q0 D q ! p C 1
7 spawn P-MERGE-SORT.A; p; q; T; 1/
8 P-MERGE-SORT.A; q C 1; r; T; q0 C 1/
9 sync

10 P-MERGE.T; 1; q0; q0 C 1; n; B; s/

After line 1 computes the number n of elements in the input subarray AŒp : : r !,
lines 2–3 handle the base case when the array has only 1 element. Lines 4–6 set
up for the recursive spawn in line 7 and call in line 8, which operate in parallel. In
particular, line 4 allocates a temporary array T with n elements to store the results
of the recursive merge sorting. Line 5 calculates the index q of AŒp : : r ! to divide
the elements into the two subarrays AŒp : : q! and AŒq C 1 : : r ! that will be sorted
recursively, and line 6 goes on to compute the number q0 of elements in the first
subarray AŒp : : q!, which line 8 uses to determine the starting index in T of where
to store the sorted result of AŒq C 1 : : r !. At that point, the spawn and recursive
call are made, followed by the sync in line 9, which forces the procedure to wait
until the spawned procedure is done. Finally, line 10 calls P-MERGE to merge
the sorted subarrays, now in T Œ1 : : q0! and T Œq0 C 1 : : n!, into the output subarray
BŒs : : s C r ! p!.

Analysis of multithreaded merge sort
We start by analyzing the work PMS1.n/ of P-MERGE-SORT, which is consider-
ably easier than analyzing the work of P-MERGE. Indeed, the work is given by the
recurrence
PMS1.n/ D 2 PMS1.n=2/C PM1.n/

D 2 PMS1.n=2/C‚.n/ :

This recurrence is the same as the recurrence (4.4) for ordinary MERGE-SORT
from Section 2.3.1 and has solution PMS1.n/ D ‚.n lg n/ by case 2 of the master
theorem.

We now derive and analyze a recurrence for the worst-case span PMS1.n/. Be-
cause the two recursive calls to P-MERGE-SORT on lines 7 and 8 operate logically
in parallel, we can ignore one of them, obtaining the recurrence

Source: Introduction to Algorithms, 3rd Edition

Multithread Merge Pseudocode

800 Chapter 27 Multithreaded Algorithms

The call BINARY-SEARCH.x; T; p; r/ takes ‚.lg n/ serial time in the worst case,
where n D r ! p C 1 is the size of the subarray on which it runs. (See Exer-
cise 2.3-5.) Since BINARY-SEARCH is a serial procedure, its worst-case work and
span are both ‚.lg n/.

We are now prepared to write pseudocode for the multithreaded merging pro-
cedure itself. Like the MERGE procedure on page 31, the P-MERGE procedure
assumes that the two subarrays to be merged lie within the same array. Un-
like MERGE, however, P-MERGE does not assume that the two subarrays to
be merged are adjacent within the array. (That is, P-MERGE does not require
that p2 D r1 C 1.) Another difference between MERGE and P-MERGE is that
P-MERGE takes as an argument an output subarray A into which the merged val-
ues should be stored. The call P-MERGE.T; p1; r1; p2; r2; A; p3/ merges the sorted
subarrays T Œp1 : : r1! and T Œp2 : : r2! into the subarray AŒp3 : : r3!, where r3 D
p3 C .r1 ! p1 C 1/C .r2 ! p2 C 1/ ! 1 D p3 C .r1 ! p1/C .r2 ! p2/C 1 and
is not provided as an input.

P-MERGE.T; p1; r1; p2; r2; A; p3/

1 n1 D r1 ! p1 C 1
2 n2 D r2 ! p2 C 1
3 if n1 < n2 // ensure that n1 " n2

4 exchange p1 with p2

5 exchange r1 with r2

6 exchange n1 with n2

7 if n1 == 0 // both empty?
8 return
9 else q1 D b.p1 C r1/=2c

10 q2 D BINARY-SEARCH.T Œq1!; T; p2; r2/
11 q3 D p3 C .q1 ! p1/C .q2 ! p2/
12 AŒq3! D T Œq1!
13 spawn P-MERGE.T; p1; q1 ! 1; p2; q2 ! 1; A; p3/
14 P-MERGE.T; q1 C 1; r1; q2; r2; A; q3 C 1/
15 sync

The P-MERGE procedure works as follows. Lines 1–2 compute the lengths n1

and n2 of the subarrays T Œp1 : : r1! and T Œp2 : : r2!, respectively. Lines 3–6 en-
force the assumption that n1 " n2. Line 7 tests for the base case, where the
subarray T Œp1 : : r1! is empty (and hence so is T Œp2 : : r2!), in which case we sim-
ply return. Lines 9–15 implement the divide-and-conquer strategy. Line 9 com-
putes the midpoint of T Œp1 : : r1!, and line 10 finds the point q2 in T Œp2 : : r2! such
that all elements in T Œp2 : : q2 ! 1! are less than T Œq1! (which corresponds to x)
and all the elements in T Œq2 : : p2! are at least as large as T Œq1!. Line 11 com-

Source: Introduction to Algorithms, 3rd Edition

Multithread Merge Diagram

Source: Introduction to Algorithms, 3rd Edition

