Parallel Programming
CPSC 6109 - Algorithms Analysis and Design

Dr. Hyrum D. Carroll

March 27, 2024

Parallel Algorithms Module Objectives

The goal of this module is that by the end of it you will be able to:

1. Appreciate that modern computers have multiple processing
units

2. Describe the role of a concurrency platform
3. Calculate speedup given performance results

4. Identify a race condition in code and explain why it is a race
condition

5. Describe how and why an algorithm is parallized (for example,
matrix multiple and mergesort)

Parallel Systems

We have access to several parallel architectures:
» Multicore machines
» GPUs (graphics processing units) with multiple processors
» Clusters
>

Cloud computing

Parallel Systems

We have access to several parallel architectures:
» Multicore machines
» GPUs (graphics processing units) with multiple processors
» Clusters
» Cloud computing

Which ones have you used?

Parallelism in Your Computers

How many cores does your computer have?

Parallelism in Your Computers

How many cores does your computer have?
How many cores does your computer (your phone) have?

Parallelism in Your Computers

wwwwwww

Source: Advanced Micro Devices

Parallelism in Your Computers

111 11~ -DD

) ERRERERE

nn!
DD

OpenSPARC, Oracle.com

Memory Models

Two memory models:
1. Shared memory

2. Distributed memory

Memory Models

Two memory models:
1. Shared memory

» All cores can access all of the memory

2. Distributed memory

Memory Models

Two memory models:
1. Shared memory
» All cores can access all of the memory
2. Distributed memory

» Cores have private memory, need to send messages to other
cores

Memory Models

Two memory models:
1. Shared memory
» All cores can access all of the memory
2. Distributed memory
» Cores have private memory, need to send messages to other
cores

Both memory models exist in practice

Shared Memory

Two main features of a the shared memory model:
1. Multiple threads

2. Concurrency platform handles scheduling (including
load-balancing)

Parallel Programming in a Nutshell

Load balancing vs Communication
This is the eternal problem in parallel computing. The basic
approaches to this problem include:

» Data partitioning - moving different parts of the data set
across several nodes

» Task partitioning - give separate tasks to different nodes

Definition of Terms

Parallel processing terms:
P node - a box usually containing processors, local memory,
disks and network connection

» cluster - a group of nodes networked together

» speedup: S, = %

T
pTp
(T; is the execution time for i processors, p is the number of

processors)

> efficiency: % =

Speedup

» Adding more processors does not always improve the speed a
code runs.

» Usually, better speedup can be found by increasing the
problem size, at least to a point.

» The non-parallel part of a code generally scales linearly with
the problem size. The parallel part usually scales with the
problem size to some power.

» Generally increasing the problem size without increasing the
node number helps performance.

Scalability

Good parallel algorithms run faster when more nodes are available.
In the best case, doubling the number of nodes decreases the
execution time by a factor of two.

One way to consider scaling of a code is Amdahl’s law:

1
SP = 11—«
o+ P
where « is the portion of the code which cannot be parallelized
and p is the number of processors.
This is a simplification, but-
Speedup is limited by the slowest portion of the code.

Amdahl's Law

10000 : . .
linear ——

alpha: 0.01 —x<—
1000 | @Pha: 0.05 —x—
alpha: 0.10 —3—
alpha: 0.25

alpha: 0.50 —o—
[alpha

100

Speedup

10

o

1 10 100 1000 10000

Number of Processors

Communication

» Communication between nodes takes a great deal of time.

» Typically you can do thousands of computations in the time it
takes to pass the simplest message.

» The time it takes for a message to be passed is limited by
bandwidth b and latency /. To pass a message of size s, you
need

s
-+
b—l—

(Assuming b, /, and s are in consistent units.)

Introduction to OpenMP

OpenMP is a concurrency platform.

It is as a set of simple program additions to make codes run
efficiently on shared memory computers. The formal API for
OpenMP is only about 50 pages long, and contains compiler
directives and library functions.

http://www.1llnl.gov/computing/tutorials/openMP/

OpenMP Threads

OpenMP uses threads for parallel programming
» Forks and joins are used for most of the internal programming
» Speedup is achieved by the operating system splitting the
threads across multiple CPUs.

> New threads are created explicitly by the program directives
dynamically.

Forks and Joins

Parallel Task | Parallel Task Il Parallel Task IlI

o

Master Thread

Parallel Task | Parallel Task Il Parallel Task IlI
Master Thread /7-7‘\

Source: Wikipedia user Al

Goals of OpenMP - from LLNL

» Standardization

» Lean and Mean - only 3-4 directives
» Ease of use

» Portability - F77, F90, F95, C, C++

Goals of OpenMP - from LLNL

» Standardization
» Lean and Mean - only 3-4 directives
» Ease of use
» Portability - F77, F90, F95, C, C++
Note: You can not use OpenMP and Java together

OpenMP Programming Model - from LLNL

Shared Memory, thread based

Explicit Parallelism

Fork-Join Model

Compiler Directives

Nested Parallelism Support - in most implementations
Dynamic Threads

Not tied to 1/O

vVvVvvyVvYvVvyyypy

Explicit Parallelism

» You must tell the computer what sections of code to
parallelize using complier directives.

» The compiler directives vary between languages, but are
ignored when OpenMP flags are not set with the compiler.

» Codes written with OpenMP can run easily on serial machines.

Environment and Library Routines

» Some environmental variables are needed to make the code
execute using the correct number of threads

» Some library routines allow the programmer to set and access
system variables

Not Message Passing

This is NOT a set of message passing routines. Instead, you give
directives to the compiler of what parts of the code can be
executed in parallel.

In some ways, OpenMP is a set of directives to tell the compiler
how to more efficiently handle loops.

General Syntax

» Fortran:

I$0OMP <directive>

do useful stuff

I$0MP end <directive>
> C/C++:

#pragma omp <directive-name> clause

{

do useful stuff in a structured block

}

A Trivial Example

Basic Code

1| program trivial

3l end program

2 printx, " Hello World!’

OMP Additions

program trivial
ISOMP PARALLEL

ISOMP END PARALLEL

~N o oA W N

end program trivial

printx, Hello World!"’

% gfortran trivial.f90
% ./a.out
Hello World!

% gfortran trivialOpenMP.f90
% ./a.out
Hello World!

A Trivial Example

Basic Code

1| program trivial

3l end program

2 printx, " Hello World!’

OMP Additions

program trivial
ISOMP PARALLEL

ISOMP END PARALLEL

~N o oA W N

end program trivial

printx, Hello World!"’

% gfortran trivial.f90
% ./a.out
Hello World!

% gfortran trivialOpenMP.f90
% ./a.out
Hello World!

What went wrong?

Execution of the Trivial Example

% gfortran trivialOpenMP.f90 -fopenmp
% ./a.out

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

% export OMP_NUM_THREADS=3
% ./a.out

Hello World!

Hello World!

Hello World!

Thread 1D

© 0 N O U A W N

=
o

program triviall
implicit none
integer :: OMP_GET_THREADNUM, OMP_GET_MAX_THREADS
integer :: tid, nthreads
ISOMP PARALLEL PRIVATE(nthreads, tid)
tid = OMP_GET_-THREAD_NUM ()
nthreads = OMP_GET_MAX_THREADS ()
printx, Hello World! from ', tid,6 nthreads
I1SOMP END PARALLEL

end program

Note the PRIVATE key word, indicating that all threads have their
own copy of the variable.

Thread ID (2)

% gfortran -fopenmp triviall.f90

% ./a.out

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

World!
World!
World!
World!
World!
World!
World!
World!

from
from
from
from
from
from
from
from

O 0N~ D WN O

L = e

Thread 1D

program trivial2
implicit none
integer :: OMP_GET_THREAD_NUM, OMP_GET_MAX_THREADS
integer :: tid, nthreads
nthreads = OMP_GET_MAX_THREADS ()
ISOMP PARALLEL PRIVATE(tid)
tid = OMP_GET_THREAD_-NUM()
printx, ' Hello World! from ', tid,nthreads
ISOMP END PARALLEL
end program

© 0 N O U A W N

-
o

Note that nthreads is outside of the OMP directives

Thread ID (2)

% gfortran -fopenmp trivial2.f90

% ./a.out

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

World!
World!
World!
World!
World!
World!
World!
World!

from
from
from
from
from
from
from
from

D W NN, OO,

QO 0 00 O 0 00 0 0

Parallelizing Loops

To parallelize a loop, you need to help the compiler figure out the
most efficient way to use threads. There are simple defaults, but
giving it more details can help efficiency.

The basic directives are:

I$0MP PARALLEL
I$0MP DO

some parallel loop

'$0MP END DO
'$OMP END PARALLEL

A Simple OMP Example

omptestl

-

program omptestl
integer, parameter :: n = 10000
integer , parameter :: dble = selected_real_kind
(15,307)
real (kind=dble), dimension(n) :: a
integer :: i, j
ISOMP PARALLEL
1SOMP DO
do j =1, 100000
do i =1, n
10 a(i) = log(real(i)) + j
11 enddo
12 enddo
13| I$OMP END DO
14| !SOMP END PARALLEL
15 print*,a(l)
16| end program omptestl

w N

© © N o U »

Results
omptestl

Seconds

40
35
30
25
20
15
10

‘real —|—

OMP_NUM_THREADS

Results
omptestl

Seconds

40
35
30
25
20
15
10

real ——
user —¢—
\/ N/
< <
| | | |
T T T
3 4 5 6 7

OMP_NUM_THREADS

Results

omptestl

ideal

Speedup

N W~ U1 O N ©
T

o B
.o

2 3 4 5 6
OMP_NUM_THREADS

Results
omptestl

0.8 -

0.6 -

04+

Efficiency

0.2 - i

OMP_NUM_THREADS

Combining Directives

You do not have to have a separate directive on each line. For
example,

I$0MP PARALLEL
1$0MP DO
I$0MP PRIVATE(NTHREADS, TID)

Becomes

I$0MP PARALLEL DO PRIVATE(NTHREADS, TID)

Numerical Integration

3.5

2.5

15

0.5

*%

Numerical Integration

Integrating

w:/l/2 LI (1)

-1/2 1 +X2

We can approximate this integral using Simpson's algorithms

>

| 2
>
>

vy

Input the number of partitions to be used
Divide the domain into n partitions
Evaluate the function at each partition

Multiply the function evaluation times the width of the
function to find a differential area

Add the differential areas together
Output the result

Parallel Integration

In parallel, the problem is nearly the same.

>

vvyyy

vy

Have processing element (PE) zero, get the number of
partitions, n

Determine the number of PEs: m

Divide the domain into - partitions on each PE
Evaluate the function at each partition

Multiply the function evaluation times the width of the
function to find a differential area

Add the differential areas together across all the PEs
On PE zero, output the result

Simple Code to Calculate PI (serial version)

program reduce
integer :: i,
double precision :: x, pi,
sum =0.0d0; nsteps = 10000

1
2 num_steps
3
4
5 step = 1.0d0 / dble(nsteps)
6
7
8
9

step, sum

do i = 1, nsteps
x = (dble(i) + 0.5d0) * step
sum = sum + 4.0d0 /(1.0d0 + xx*x)

enddo
10 pi = step * sum
11 print %, "Estimate of Pi with ", nsteps,

, Pi

12| end program reduce

”

steps is

$./reduce

Estimate of Pi with 10000 steps is

3.1413926444243838

Simple Code to Calculate PI (parallel version)

1| program reduceOMP

2 integer :: i, num_steps

3 double precision :: x, pi, step, sum
4 sum =0.0d0; num_steps = 10000

5 step = 1.0d0 / dble(num_steps)

6| |1SOMP PARALLEL DO

7 do i = 1, num_steps

8 x = (dble(i) + 0.5d0) * step

9 sum = sum + 4.0d0 /(1.0d0 + xx*x)

10 enddo

11| !'SOMP END PARALLEL DO

12 pi = step * sum

13 print %, "Estimate of Pi with ", num_steps, " steps
is ", pi

14| end program reduceOMP

$ gfortran -fopenmp reduceOMP.f90 -o reduceOMP
$./reduceOMP
Estimate of Pi with 10000 steps is 7.5588335781770253

Simple Code to Calculate PI (parallel version)

1| program reduceOMP

2 integer :: i, num_steps

3 double precision :: x, pi, step, sum
4 sum =0.0d0; num_steps = 10000

5 step = 1.0d0 / dble(num_steps)

6| |1SOMP PARALLEL DO

7 do i = 1, num_steps

8 x = (dble(i) + 0.5d0) * step

9 sum = sum + 4.0d0 /(1.0d0 + xx*x)

10 enddo

11| !'SOMP END PARALLEL DO

12 pi = step * sum

13 print %, "Estimate of Pi with ", num_steps, " steps
is ", pi

14| end program reduceOMP

$ gfortran -fopenmp reduceOMP.f90 -o reduceOMP
$./reduceOMP
Estimate of Pi with 10000 steps is 7.5588335781770253

What happened?

Race Conditions

A race condition exists when two processing units are accessing the
same resource and one or both of them are writing to it.
Example from Introduction to Algorithms:

RACE-EXAMPLE()

step X r

2 rp=x 0 —

1 x=0 wE L

. 30 1

2 parallel fori = 1to?2 ¢ 0

_— 6 1

3 . X x+1 o :

4 print x

(a) (b)

Race Condition Examples

Identify the race condition (if any) from example from Introduction
to Algorithms:

MAT-VEC-WRONG (A4, x)

P-SQUARE-MATRIX-MULTIPLY (A4, B)

1 n = A.rows
2 let y be a new vector of length n 1 n = A.rows)
3 parallel fori = 1ton 2 letC be anew n X 1 matrix
3 parallel fori = 1ton

4 Vi = 0 .

. 4 parallel for j = 1ton
5 parallelfori = 1ton 5 e = 0
6 parallel for j = 1ton 6 f(l)/r k = 1ton
7 Yi =)i +aijxj 7 Cij = c,»j—i—a,«k-bk_,-
8 return y 8 return C

Race Condition Examples

Identify the race condition (if any) from example from Introduction
to Algorithms:

MAT-VEC-WRONG (A4, x)

P-SQUARE-MATRIX-MULTIPLY (A4, B)

1 n = A.rows
2 let y be a new vector of length n I n = A.rows)
3 parallel fori = 1ton 2 letC beane.wn X 1 matrix
3 parallelfori = 1ton

4 Vi = 0 .

. 4 parallel for j = 1ton
5 parallelfori = 1ton 5 =0
6 parallel for j = 1ton 6 f(;jr k = 1ton
7 Vi = Vi +aijX; 7 ¢ij = ¢ij + ik - by
8 return y 8 return C

In MAT-VEC-WRONG, multiple threads are writing to y;

Race Condition Examples

Identify the race condition (if any) from example from Introduction

to Algorithms:
MAT-VEC-WRONG (4, x)

n = A rows P-SQUARE-MATRIX-MULTIPLY (A4, B)

Yi = yit+aix;
return y 8 return C
In MAT-VEC-WRONG, multiple threads are writing to y; In
P-SQUARE-MATRIX-MULTIPLY, only one thread is writing to ¢; ;

Cij = Cij + aik - b

1
2 let y be a new vector of length n I n = A.rows)
3 parallelfori = 1 ton 2 letC be anew n xn matrix
4 —0 3 parallel fori = 1ton

Vi : 4 parallel for j = 1ton
5 parallelfori = 1ton 5 e =0
6 parallel for j = 1ton 6 f(l)jr k= 1ton
7 7
8

Reductions

Because the loops are executing separately, you may wish to
combine the results from different threads to a final answer. You
need to use reduction to make this work.

$!0MP PARALLEL PRIVATE(X) REDUCTION (+:SUM)

OpenMP Modifications

1| program reduceOMP2

2 integer :: i, num_steps

3 double precision :: x, pi, step, sum

4 sum =0.0d0 ; nsteps = 100000000

5| step = 1.0d0 / dble(nsteps)

6| |1SOMP PARALLEL DO PRIVATE(X) REDUCTION(4:SUM)
71do i = 1, nsteps

8| x = (dble(i) 4+ 0.5d0) * step

9 sum = sum + 4.0d0 /(1.0d0 + xx*x)

10| enddo

11| '$OMP END PARALLEL DO

12 pi = step * sum

13 print %, "Estimate of Pi with ", nsteps, " steps is ”
. pi

14| end program reduceOMP2

$ gfortran -fopenmp reduceOMP2.f90 -o reduceOMP2
$./reduceOMP2
Estimate of Pi with 10000 steps is 3.1413926444243732

Results
reduceOMP2

Seconds

15

0.5

real —|—

1 1
L

6 8 10
OMP_NUM_THREADS

12 14

16

Results
reduceOMP2

Seconds

1.5

0.5

6 8 10
OMP_NUM_THREADS

12 14

16

Results
reduceOMP2

16
14
12 -
10 -

Speedup
~ O ©

N

'ideal

o

6 8 10
OMP_NUM_THREADS

12

14

16

Results
reduceOMP2

0.8 -

0.6 -

0.4 -

Efficiency

0.2 - i

0 I I I I I I I
0 2 4 6 8 10 12 14 16

OMP_NUM_THREADS

Loop Splitting

One of the key ideas to remember is that loops often contain
several operations that can be split. Taking an example from the
Patterns in Parallel Programming book, imagine we have a loop
with two functions:
» BIG_.COMPUTATION - a big computation the executes
independently on each element in the loop
» COMBINE - an element that cannot be parallelized and must
execute in order

Loop Splitting

do i = 1, nsteps
x = BIG_COMPUTATION (i)
call COMBINE(x,answer)
enddo

can be split into

do i = 1, nsteps
x(i) = BIG_COMPUTATION(i)
enddo
do i = 1, nsteps

call COMBINE(x(i),answer)
enddo

Using OpenMP in Loop Splitting

I$0MP PARALLEL DO PRIVATE(I)

do i = 1, nsteps
x(i) = BIG_COMPUTATION(i)
enddo

I$0MP END PARALLEL DO

do i = 1, nsteps
call COMBINE(x(i),answer)
enddo

Controlling Loops

There are many options for controlling the execution of threads.

!$0MP DO SCHEDULE(TYPE, integer)

» schedule(static[,chunk]) - groups of size chunk statically
assigned in a round-robin fashion

» schedule(dynamic[,chunk]) - threads dynamically grab work as
it is completed

» schedule(guided[,chunk]) - chunk size is reduced automatically
during iteration toward a minimum level of chunk

» schedule(runtime) - checks the OMP_SCHEDULE
environmental variable

Controlling Loops

integer, parameter :: chunk = 10

'$OMP PARALLEL PRIVATE(i,j,z,c,it) DEFAULT(SHARED)
!$OMP DO SCHEDULE (DYNAMIC,CHUNK)
doi=1,n
do j=1, n

Controlling Loops

setenv OMP_SCHEDULE
11.477u 0.012s 0:08

setenv OMP_SCHEDULE

11.239u 0.006s 0:05.

setenv OMP_SCHEDULE

11.453u 0.005s 0:06.

setenv OMP_SCHEDULE

11.43%u 0.028s 0:05.

no omp

11.280u 0.004s 0:11.

static

.24 139.3%

dynamic
67 198.0%

guided
52 175.6%

static,20
89 194.3Y%

28 100.0%

Examples

Multithread Matrix Multiplication

To multiply matrix A by matrix B to get matrix C we can divide
the matrixes into submatrices:

Al A Bi1 Biz CGi1 Go >
A= B = C=
(A Ax) (Bx1 B) (1 C»
(CGi1 Go) _ < Al A > < Bi1 Bz > 2)
G1 G Ay Ax Bo1 By

(Cii G2 > _ (A11Bi1 AuBi > < A12Bo1 AaBoo)
G1 G A21Bi1 A B2 AxpBo1 AxBo
(3)

Multithread Matrix Multiplication Pseudocode

P-MATRIX-MULTIPLY-RECURSIVE(C, 4, B)

1 n = A.rows

2 ifn==
3 ¢ = ayby
4 else let T be a new n X n matrix
5 partition A, B, C,and T into n/2 x n/2 submatrices
Ay1, Avp, Aoy, Agos Biy, Bia, Bay, Boy; Ciy, Cia, Gy, Coos
and T, T12, Ts1, T»y; respectively
6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy1, A11, B11)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C15, A;y, B12)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, Asy, By1)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, A21, B12)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE(Tyy, A12, B2y)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(T},, A12, B2))
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (T3, As,, By)
13 P-MATRIX-MULTIPLY-RECURSIVE (733, A2, B2s)
14 sync
15 parallel fori = 1ton
16 parallel for j = 1ton
17 Cij = Cij Tl

Source: Introduction to Algorithms, 3rd Edition

Multithread Mergesort Pseudocode
P-MERGE-SORT(A, p,r, B, s)
Il n=r—p+1
2 ifn-==
3 B[s] = A[p]
4 elselet T[1..n] be anew array

5 q = |(p+r)/2]

6 g =q—p+1

7 spawn P-MERGE-SORT(A, p,q, T, 1)
8 P-MERGE-SORT(A4,qg + 1,r,T,q" + 1)
9 sync
10 P-MERGE(T, 1,4',q' + 1,n, B,s)

Source: Introduction to Algorithms, 3rd Edition

Multithread Merge Pseudocode

P'MERGE(T9 plorlapleraAv p3)
1 ni=r—p+1

2 np=rp—py+1

3 ifn; <n, // ensure that ny > n,
4 exchange p; with p,

5 exchange ry with r,

6 exchange n; with n,

7 ifn, == // both empty?

8 return

9 elseqr = [(p1+11)/2]
10 q> = BINARY-SEARCH(T [q1]. T, p2,712)
11 g3 = p3+ (g1 — p1) + (g2 — p2)
12 Algs] = Tlq1]
13 spawn P-MERGE(T, p1,q1 — 1, p2, g2 — 1, A, p3)
14 P-MERGE(T,ql + 1,r1,q2,r2,A,q3 + l)
15 sync

Source: Introduction to Algorithms, 3rd Edition

Multithread Merge Diagram

P1 q1
T

r

P2

q2 T2

A] B

P3

r3

qs
Source: Introduction to Algorithms, 3rd Edition

