
NP-Completeness
CPSC 6109 - Algorithms Analysis and Design

Dr. Hyrum D. Carroll

April 10, 2024

Complexity Classes

Classes:

I P: Problems that are solvable in polynomial time: O(nk)

I NP: Verifiable in polynomial time
(verifiable means we can check the answer)

All problems in P are in NP: P ⊆ NP
(because we can more than check an answer, we can solve it in
polynomial time)
The open question is if it’s P ⊂ NP

Complexity Classes

Classes:

I P: Problems that are solvable in polynomial time: O(nk)

I NP: Verifiable in polynomial time
(verifiable means we can check the answer)

I NP-Complete: as hard as any other problem in NP

All problems in P are in NP: P ⊆ NP
(because we can more than check an answer, we can solve it in
polynomial time)
The open question is if it’s P ⊂ NP

Complexity Classes (illustrated)

Source: Wikimedia Commons, user: Behnam Esfahbod

Example: Long Simple Paths

I Simple paths are acyclic

I Is determining if a path is simple in P or NP?

I Formally, we would phrase this as, given graph G and vertices
u and v and a number k , is there a simple path from u to v
with at most k edges?

I Is this problem in P or NP?

I Given a solution, can we determine if it’s acyclical and has at
most k edges in polynomial time?

I Yes, so this problem is in NP

I Is it in P?

I Can we develop an algorithm that runs in polynomial time?

Example: Long Simple Paths

I Simple paths are acyclic

I Is determining if a path is simple in P or NP?

I Formally, we would phrase this as, given graph G and vertices
u and v and a number k , is there a simple path from u to v
with at most k edges?

I Is this problem in P or NP?

I Given a solution, can we determine if it’s acyclical and has at
most k edges in polynomial time?

I Yes, so this problem is in NP

I Is it in P?

I Can we develop an algorithm that runs in polynomial time?

Example: Long Simple Paths

I Simple paths are acyclic

I Is determining if a path is simple in P or NP?

I Formally, we would phrase this as, given graph G and vertices
u and v and a number k , is there a simple path from u to v
with at most k edges?

I Is this problem in P or NP?

I Given a solution, can we determine if it’s acyclical and has at
most k edges in polynomial time?

I Yes, so this problem is in NP

I Is it in P?

I Can we develop an algorithm that runs in polynomial time?

Example: Long Simple Paths

I Simple paths are acyclic

I Is determining if a path is simple in P or NP?

I Formally, we would phrase this as, given graph G and vertices
u and v and a number k , is there a simple path from u to v
with at most k edges?

I Is this problem in P or NP?

I Given a solution, can we determine if it’s acyclical and has at
most k edges in polynomial time?

I Yes, so this problem is in NP

I Is it in P?

I Can we develop an algorithm that runs in polynomial time?

Example: Long Simple Paths

I Simple paths are acyclic

I Is determining if a path is simple in P or NP?

I Formally, we would phrase this as, given graph G and vertices
u and v and a number k , is there a simple path from u to v
with at most k edges?

I Is this problem in P or NP?

I Given a solution, can we determine if it’s acyclical and has at
most k edges in polynomial time?

I Yes, so this problem is in NP

I Is it in P?

I Can we develop an algorithm that runs in polynomial time?

Example: Long Simple Paths

I Simple paths are acyclic

I Is determining if a path is simple in P or NP?

I Formally, we would phrase this as, given graph G and vertices
u and v and a number k , is there a simple path from u to v
with at most k edges?

I Is this problem in P or NP?

I Given a solution, can we determine if it’s acyclical and has at
most k edges in polynomial time?

I Yes, so this problem is in NP

I Is it in P?

I Can we develop an algorithm that runs in polynomial time?

Exercise

I Is determining the solution to a linear programming problem
in P or NP?

Exercise: Solution

I Is determining the solution to a linear programming problem
in P, NP or NP-Complete?

I Cast the question as a yes-no question:

I To determine if it is in NP, can we, in polynomial-time,
determine if a solution is correct?

I Yes

I To determine if it is in P, can we, in polynomial-time,
calculate a solution?

I Yes

I So, in P

I But integer linear programming is NP-Complete :)

Exercise: Solution

I Is determining the solution to a linear programming problem
in P, NP or NP-Complete?

I Cast the question as a yes-no question:

I To determine if it is in NP, can we, in polynomial-time,
determine if a solution is correct?

I Yes

I To determine if it is in P, can we, in polynomial-time,
calculate a solution?

I Yes

I So, in P

I But integer linear programming is NP-Complete :)

Exercise: Solution

I Is determining the solution to a linear programming problem
in P, NP or NP-Complete?

I Cast the question as a yes-no question:

I To determine if it is in NP, can we, in polynomial-time,
determine if a solution is correct?

I Yes

I To determine if it is in P, can we, in polynomial-time,
calculate a solution?

I Yes

I So, in P

I But integer linear programming is NP-Complete :)

Exercise: Solution

I Is determining the solution to a linear programming problem
in P, NP or NP-Complete?

I Cast the question as a yes-no question:

I To determine if it is in NP, can we, in polynomial-time,
determine if a solution is correct?

I Yes

I To determine if it is in P, can we, in polynomial-time,
calculate a solution?

I Yes

I So, in P

I But integer linear programming is NP-Complete :)

Exercise: Solution

I Is determining the solution to a linear programming problem
in P, NP or NP-Complete?

I Cast the question as a yes-no question:

I To determine if it is in NP, can we, in polynomial-time,
determine if a solution is correct?

I Yes

I To determine if it is in P, can we, in polynomial-time,
calculate a solution?

I Yes

I So, in P

I But integer linear programming is NP-Complete :)

How knowing about complexity can help you

I If you’re asked to implement a solution to a problem that is
NP-Complete, don’t waste your time coming up with an exact
solution, but focus on:
I Approximations (Chapter 35)
I Heuristics
I Accepting that an exponential run-time is the best you can do
I Determine if you can solve just a subset of the problems

efficiently

Showing a Problem is NP-Complete

I Instead of how easy a problem is, we’re saying, how hard the
problem is

I Instead of proving an efficient algorithm, we showing that, no
efficient algorithm is likely to exist

Decision Problems vs. Optimization Problems

I Usually a problem is an optimization problem:

I For each input, what’s the best output
I Example: Shortest Paths (given a graph and weights,

what’s the shortest path between vertices u and v)

I NP-Completeness applies to decision problems (yes / no
problems)

I Usually we can just bound an optimization problem to make it
a decision problem

I Example:
I Shortest Paths → Path
I Given a graph and weights and threshold k, is there a path

between vertices u and v that has at most k edges

Decision Problems vs. Optimization Problems

I Usually a problem is an optimization problem:
I For each input, what’s the best output

I Example: Shortest Paths (given a graph and weights,
what’s the shortest path between vertices u and v)

I NP-Completeness applies to decision problems (yes / no
problems)

I Usually we can just bound an optimization problem to make it
a decision problem

I Example:
I Shortest Paths → Path
I Given a graph and weights and threshold k, is there a path

between vertices u and v that has at most k edges

Decision Problems vs. Optimization Problems

I Usually a problem is an optimization problem:
I For each input, what’s the best output
I Example: Shortest Paths (given a graph and weights,

what’s the shortest path between vertices u and v)

I NP-Completeness applies to decision problems (yes / no
problems)

I Usually we can just bound an optimization problem to make it
a decision problem

I Example:
I Shortest Paths → Path
I Given a graph and weights and threshold k, is there a path

between vertices u and v that has at most k edges

Decision Problems vs. Optimization Problems

I Usually a problem is an optimization problem:
I For each input, what’s the best output
I Example: Shortest Paths (given a graph and weights,

what’s the shortest path between vertices u and v)

I NP-Completeness applies to decision problems

(yes / no
problems)

I Usually we can just bound an optimization problem to make it
a decision problem

I Example:
I Shortest Paths → Path
I Given a graph and weights and threshold k, is there a path

between vertices u and v that has at most k edges

Decision Problems vs. Optimization Problems

I Usually a problem is an optimization problem:
I For each input, what’s the best output
I Example: Shortest Paths (given a graph and weights,

what’s the shortest path between vertices u and v)

I NP-Completeness applies to decision problems (yes / no
problems)

I Usually we can just bound an optimization problem to make it
a decision problem

I Example:
I Shortest Paths → Path
I Given a graph and weights and threshold k, is there a path

between vertices u and v that has at most k edges

Decision Problems vs. Optimization Problems

I Usually a problem is an optimization problem:
I For each input, what’s the best output
I Example: Shortest Paths (given a graph and weights,

what’s the shortest path between vertices u and v)

I NP-Completeness applies to decision problems (yes / no
problems)

I Usually we can just bound an optimization problem to make it
a decision problem

I Example:
I Shortest Paths → Path
I Given a graph and weights and threshold k, is there a path

between vertices u and v that has at most k edges

Decision Problems vs. Optimization Problems

I Usually a problem is an optimization problem:
I For each input, what’s the best output
I Example: Shortest Paths (given a graph and weights,

what’s the shortest path between vertices u and v)

I NP-Completeness applies to decision problems (yes / no
problems)

I Usually we can just bound an optimization problem to make it
a decision problem

I Example:
I Shortest Paths → Path
I Given a graph and weights and threshold k, is there a path

between vertices u and v that has at most k edges

Decision Problems vs. Optimization Problems (cont’d)

I Makes problems easier (or at least no harder) than the
optimization problem

I Often, solving the optimization problem will solve the decision
problem (because it’s a subset of it)

I So, the decision problem version is easier

I If we can prove that the decision problem is hard, then we can
prove that the optimization problem is hard

Decision Problems vs. Optimization Problems (cont’d)

I Makes problems easier (or at least no harder) than the
optimization problem

I Often, solving the optimization problem will solve the decision
problem (because it’s a subset of it)

I So, the decision problem version is easier

I If we can prove that the decision problem is hard, then we can
prove that the optimization problem is hard

Decision Problems vs. Optimization Problems (cont’d)

I Makes problems easier (or at least no harder) than the
optimization problem

I Often, solving the optimization problem will solve the decision
problem (because it’s a subset of it)

I So, the decision problem version is easier

I If we can prove that the decision problem is hard, then we can
prove that the optimization problem is hard

Decision Problems vs. Optimization Problems (cont’d)

I Makes problems easier (or at least no harder) than the
optimization problem

I Often, solving the optimization problem will solve the decision
problem (because it’s a subset of it)

I So, the decision problem version is easier

I If we can prove that the decision problem is hard, then we can
prove that the optimization problem is hard

Reductions

I Almost every NP-Complete proof makes a reduction of one
problem to another

Polynomial-Time Reductions

I Instance: 1 particular set of inputs

I We want to solve a decision problem A in polynomial-time

I We have a known polynomial-time solution to decision
problem B

I We have a polynomial-time mapping for every instant of A
(α) to an instance of B (β) such that the answer to α is yes if
and only if the answer to β is yes

Figure 34.1 from Introduction to Algorithms 4th Edition

Polynomial-Time Reductions

I Instance: 1 particular set of inputs

I We want to solve a decision problem A in polynomial-time

I We have a known polynomial-time solution to decision
problem B

I We have a polynomial-time mapping for every instant of A
(α) to an instance of B (β) such that the answer to α is yes if
and only if the answer to β is yes

Figure 34.1 from Introduction to Algorithms 4th Edition

Polynomial-Time Reductions

I Instance: 1 particular set of inputs

I We want to solve a decision problem A in polynomial-time

I We have a known polynomial-time solution to decision
problem B

I We have a polynomial-time mapping for every instant of A
(α) to an instance of B (β) such that the answer to α is yes if
and only if the answer to β is yes

Figure 34.1 from Introduction to Algorithms 4th Edition

Polynomial-Time Reductions

I Instance: 1 particular set of inputs

I We want to solve a decision problem A in polynomial-time

I We have a known polynomial-time solution to decision
problem B

I We have a polynomial-time mapping for every instant of A
(α) to an instance of B (β) such that the answer to α is yes if
and only if the answer to β is yes

Figure 34.1 from Introduction to Algorithms 4th Edition

Polynomial-Time Reductions

I Instance: 1 particular set of inputs

I We want to solve a decision problem A in polynomial-time

I We have a known polynomial-time solution to decision
problem B

I We have a polynomial-time mapping for every instant of A
(α) to an instance of B (β) such that the answer to α is yes if
and only if the answer to β is yes

Figure 34.1 from Introduction to Algorithms 4th Edition

Polynomial-Time Reductions (Pseudocode)

Boolean B(β); // known solution

Boolean A(α){
return B(transformArgs(α));

}
I If B() and transformArgs() each take polynomial-time,

then A() takes polynomial-time

I We “reduce” problem A to solving problem B

I We use the easiness of B to prove the easiness of A

Polynomial-Time Reductions (Pseudocode)

Boolean B(β); // known solution

Boolean A(α){
return B(transformArgs(α));

}
I If B() and transformArgs() each take polynomial-time,

then A() takes polynomial-time

I We “reduce” problem A to solving problem B

I We use the easiness of B to prove the easiness of A

Polynomial-Time Reductions (Pseudocode)

Boolean B(β); // known solution

Boolean A(α){
return B(transformArgs(α));

}
I If B() and transformArgs() each take polynomial-time,

then A() takes polynomial-time

I We “reduce” problem A to solving problem B

I We use the easiness of B to prove the easiness of A

Polynomial-Time Reductions In Reverse

I For NP-Complete, we want to show at least how hard a
problem is

I Assume we have:

1. A problem A that does not have a polynomial-time solution
2. A polynomial-time mapping of every instance of A to an

instance of B

I Using proof by contradiction, we can show that no
polynomial-time solution can exist for B:
I Assume that B has a polynomial-time solution. Then, we can

solve all instances of A using B (using polynomial-time
reductions)

I That’s not possible, so B cannot have a polynomial-time
solution

Polynomial-Time Reductions In Reverse

I For NP-Complete, we want to show at least how hard a
problem is

I Assume we have:

1. A problem A that does not have a polynomial-time solution

2. A polynomial-time mapping of every instance of A to an
instance of B

I Using proof by contradiction, we can show that no
polynomial-time solution can exist for B:
I Assume that B has a polynomial-time solution. Then, we can

solve all instances of A using B (using polynomial-time
reductions)

I That’s not possible, so B cannot have a polynomial-time
solution

Polynomial-Time Reductions In Reverse

I For NP-Complete, we want to show at least how hard a
problem is

I Assume we have:

1. A problem A that does not have a polynomial-time solution
2. A polynomial-time mapping of every instance of A to an

instance of B

I Using proof by contradiction, we can show that no
polynomial-time solution can exist for B:
I Assume that B has a polynomial-time solution. Then, we can

solve all instances of A using B (using polynomial-time
reductions)

I That’s not possible, so B cannot have a polynomial-time
solution

Polynomial-Time Reductions In Reverse

I For NP-Complete, we want to show at least how hard a
problem is

I Assume we have:

1. A problem A that does not have a polynomial-time solution
2. A polynomial-time mapping of every instance of A to an

instance of B

I Using proof by contradiction, we can show that no
polynomial-time solution can exist for B:

I Assume that B has a polynomial-time solution. Then, we can
solve all instances of A using B (using polynomial-time
reductions)

I That’s not possible, so B cannot have a polynomial-time
solution

Polynomial-Time Reductions In Reverse

I For NP-Complete, we want to show at least how hard a
problem is

I Assume we have:

1. A problem A that does not have a polynomial-time solution
2. A polynomial-time mapping of every instance of A to an

instance of B

I Using proof by contradiction, we can show that no
polynomial-time solution can exist for B:
I Assume that B has a polynomial-time solution. Then, we can

solve all instances of A using B (using polynomial-time
reductions)

I That’s not possible, so B cannot have a polynomial-time
solution

Polynomial-Time Reductions In Reverse

I For NP-Complete, we want to show at least how hard a
problem is

I Assume we have:

1. A problem A that does not have a polynomial-time solution
2. A polynomial-time mapping of every instance of A to an

instance of B

I Using proof by contradiction, we can show that no
polynomial-time solution can exist for B:
I Assume that B has a polynomial-time solution. Then, we can

solve all instances of A using B (using polynomial-time
reductions)

I That’s not possible, so B cannot have a polynomial-time
solution

Polynomial-Time Reductions In Reverse → NP-Complete

For NP-Completeness:

I Use polynomial-time reductions in reverse to show that
problem B is NP-Complete (if A is NP-Complete)

I Assume we have:

1. A problem A that is NP-Complete
2. A polynomial-time mapping of every instance of A to an

instance of B

I Using proof by contradiction, we can show that B is
NP-Complete.
I Assume that B has a polynomial-time solution. Then, we can

solve all instances of A using B (using polynomial-time
reductions).

I That’s not possible, so B cannot have a polynomial-time
solution.

Polynomial-Time Reductions In Reverse → NP-Complete

For NP-Completeness:

I Use polynomial-time reductions in reverse to show that
problem B is NP-Complete (if A is NP-Complete)

I Assume we have:

1. A problem A that is NP-Complete
2. A polynomial-time mapping of every instance of A to an

instance of B

I Using proof by contradiction, we can show that B is
NP-Complete.
I Assume that B has a polynomial-time solution. Then, we can

solve all instances of A using B (using polynomial-time
reductions).

I That’s not possible, so B cannot have a polynomial-time
solution.

Polynomial-Time Reductions In Reverse → NP-Complete

For NP-Completeness:

I Use polynomial-time reductions in reverse to show that
problem B is NP-Complete (if A is NP-Complete)

I Assume we have:

1. A problem A that is NP-Complete
2. A polynomial-time mapping of every instance of A to an

instance of B

I Using proof by contradiction, we can show that B is
NP-Complete.
I Assume that B has a polynomial-time solution. Then, we can

solve all instances of A using B (using polynomial-time
reductions).

I That’s not possible, so B cannot have a polynomial-time
solution.

Polynomial-Time Reductions In Reverse → NP-Complete

For NP-Completeness:

I Use polynomial-time reductions in reverse to show that
problem B is NP-Complete (if A is NP-Complete)

I Assume we have:

1. A problem A that is NP-Complete

2. A polynomial-time mapping of every instance of A to an
instance of B

I Using proof by contradiction, we can show that B is
NP-Complete.
I Assume that B has a polynomial-time solution. Then, we can

solve all instances of A using B (using polynomial-time
reductions).

I That’s not possible, so B cannot have a polynomial-time
solution.

Polynomial-Time Reductions In Reverse → NP-Complete

For NP-Completeness:

I Use polynomial-time reductions in reverse to show that
problem B is NP-Complete (if A is NP-Complete)

I Assume we have:

1. A problem A that is NP-Complete
2. A polynomial-time mapping of every instance of A to an

instance of B

I Using proof by contradiction, we can show that B is
NP-Complete.

I Assume that B has a polynomial-time solution. Then, we can
solve all instances of A using B (using polynomial-time
reductions).

I That’s not possible, so B cannot have a polynomial-time
solution.

Polynomial-Time Reductions In Reverse → NP-Complete

For NP-Completeness:

I Use polynomial-time reductions in reverse to show that
problem B is NP-Complete (if A is NP-Complete)

I Assume we have:

1. A problem A that is NP-Complete
2. A polynomial-time mapping of every instance of A to an

instance of B

I Using proof by contradiction, we can show that B is
NP-Complete.
I Assume that B has a polynomial-time solution. Then, we can

solve all instances of A using B (using polynomial-time
reductions).

I That’s not possible, so B cannot have a polynomial-time
solution.

Polynomial-Time Reductions In Reverse → NP-Complete

For NP-Completeness:

I Use polynomial-time reductions in reverse to show that
problem B is NP-Complete (if A is NP-Complete)

I Assume we have:

1. A problem A that is NP-Complete
2. A polynomial-time mapping of every instance of A to an

instance of B

I Using proof by contradiction, we can show that B is
NP-Complete.
I Assume that B has a polynomial-time solution. Then, we can

solve all instances of A using B (using polynomial-time
reductions).

I That’s not possible, so B cannot have a polynomial-time
solution.

Exercise: One NP-Complete Problem

I Choose one of Karp’s 21 NP-Complete problems

I Describe your algorithm

I Describe how we know it’s NP-Complete

Exercise: Heirarchy of Karp’s 21 NP-Complete Problems

I Draw a heirarchy (showing which problem was reduce to a
known NP-complete problem) for each one of Karp’s 21
NP-complete problems

