Linear Programming
 CPSC 6109 - Algorithms Analysis and Design

Dr. Hyrum D. Carroll

April 3, 2024

The most successful men in the end are those whose success is the result of steady accretion. - Alexander Graham Bell

Overview

Linear programming is finding a set of coefficients that the maximize (or minimize) a linear function subject to constraints

Example:
Maximize:

$$
\begin{equation*}
3 x_{1}+5 x_{2} \tag{1}
\end{equation*}
$$

Subject to:

$$
\begin{gather*}
x_{1}+x_{2} \leq 4 \tag{2}\\
x_{1}+3 x_{2} \leq 6 \tag{3}\\
x_{1} \geq 0 \tag{4}\\
x_{2} \geq 0 \tag{5}
\end{gather*}
$$

Applications

- Airline crew scheduling
- Transportation network planning
- Communication network planning
- Oil exploration and refining
- Industrial production optimization

Terms

- Linear function:

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n}=\sum_{j=1}^{n} a_{j} x_{j} \tag{6}
\end{equation*}
$$

- Linear constraints:
- Linear equality

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b \tag{7}
\end{equation*}
$$

- Linear inequalities

$$
\begin{align*}
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b \tag{8}\\
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq b \tag{9}
\end{align*}
$$

Terms (cont'd)

- Feasible region
- convex region
- i.e., blue area
- Objective value/feasible solution
- any point in the feasible region

Figure 29.2a from Introduction to Algorithms $4^{\text {th }}$ Edition

Terms (cont'd 2)

- Objective function
- linear function we're maximizing/minimizing
- Optimal solution

Figure 29.2b from Introduction to Algorithms $4^{\text {th }}$ Edition

Simplex Algorithm

Background

Discovered by US mathematician George Dantzig in 1940
Worst-case run-time is known to be exponential, that rarely happens in real-world applications

Standard Form

All constraints are inequalities
Maximize (objective function):

$$
\begin{equation*}
3 x_{1}+x_{2}+2 x_{3} \tag{10}
\end{equation*}
$$

Subject to (constraints):

$$
\begin{gather*}
x_{1}+x_{2}+3 x_{3} \leq 30 \tag{11}\\
2 x_{1}+2 x_{2}+5 x_{3} \leq 24 \tag{12}\\
4 x_{1}+x_{2}+2 x_{3} \leq 36 \tag{13}
\end{gather*}
$$

Nonnegativity constraints:

$$
\begin{equation*}
x_{1}, x_{2}, x_{3} \geq 0 \tag{14}
\end{equation*}
$$

Convert to Standard Form

Four conversions to convert to standard form (See Section 29.1):

1. Convert minimization objective function to maximization objective function
2. Replace nonnegativity constraints
3. Equality constraints to inequality constraints
4. \geq constraints to \leq constraints

Convert to Standard Form (Step 1)

Four conversions to convert to standard form (See Section 29.1):

1. Convert minimization objective function to maximization objective function
2. Replace nonnegativity constraints
3. Equality constraints to inequality constraints
4. \geq constraints to \leq constraints

Convert to Standard Form: Minimization to Maximization

Negate the coefficients in the objective function Example:

Minimize:

$$
10 x_{1}-5 x_{2}
$$

Convert to Standard Form: Minimization to Maximization

Negate the coefficients in the objective function Example:

Maximize:

$$
-10 x_{1}+5 x_{2}
$$

Convert to Standard Form (Step 2)

Four conversions to convert to standard form (See Section 29.1):

1. Convert minimization objective function to maximization objective function
2. Replace nonnegativity constraints
3. Equality constraints to inequality constraints
4. \geq constraints to \leq constraints

Convert to Standard Form: Nonnegativity Constraints

Replace each variable, x_{i}, that does not have a nonnegativity constraint with $x_{i}^{\prime}-x_{i}^{\prime \prime}$
Example:
Maximize:

$$
-10 x_{1}+5 x_{2}
$$

Subject to:

$$
\begin{gathered}
x_{1}+x_{2}=20 \\
x_{1} \leq 12 \\
x_{2} \leq 16 \\
x_{1} \geq 0
\end{gathered}
$$

x_{2} does not have a nonnegativity constraint, replace with $x_{2}^{\prime}-x_{2}^{\prime \prime}$

Convert to Standard Form: Nonnegativity Constraints (2)

Replace each variable, x_{i}, that does not have a nonnegativity constraint with $x_{i}^{\prime}-x_{i}^{\prime \prime}$
Example:
Maximize:

$$
-10 x_{1}+5 x_{2}^{\prime}-5 x_{2}^{\prime \prime}
$$

Subject to:

$$
\begin{gathered}
x_{1}+x_{2}^{\prime}-x_{2}^{\prime \prime}=20 \\
x_{1} \leq 12 \\
x_{2}^{\prime}-x_{2}^{\prime \prime} \leq 16 \\
x_{1}, x_{2}^{\prime}, x_{2}^{\prime \prime} \geq 0
\end{gathered}
$$

Convert to Standard Form (Step 3)

Four conversions to convert to standard form (See Section 29.1):

1. Convert minimization objective function to maximization objective function
2. Replace nonnegativity constraints
3. Equality constraints to inequality constraints
4. \geq constraints to \leq constraints

Convert to Standard Form: Equality to Inequality

For each constraint:

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n}=b
$$

replace with:

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n} \leq b \\
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n} \geq b
\end{aligned}
$$

Example:
Maximize:

$$
-10 x_{1}+5 x_{2}^{\prime}-5 x_{2}^{\prime \prime}
$$

Subject to:

$$
\begin{gathered}
x_{1}+x_{2}^{\prime}-x_{2}^{\prime \prime}=20 \\
x_{1} \leq 12 \\
x_{2}^{\prime}-x_{2}^{\prime \prime} \leq 16 \\
x_{1}, x_{2}^{\prime}, x_{2}^{\prime \prime} \geq 0
\end{gathered}
$$

Convert to Standard Form: Equality to Inequality (2)

For each constraint:

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n}=b
$$

replace with:

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n} \leq b \\
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n} \geq b
\end{aligned}
$$

Example:
Maximize:

$$
-10 x_{1}+5 x_{2}^{\prime}-5 x_{2}^{\prime \prime}
$$

Subject to:

$$
\begin{gathered}
x_{1}+x_{2}^{\prime}-x_{2}^{\prime \prime} \leq 20 \\
x_{1}+x_{2}^{\prime}-x_{2}^{\prime \prime} \geq 20 \\
x_{1} \leq 12 \\
x_{2}^{\prime}-x_{2}^{\prime \prime} \leq 16 \\
x_{1}, x_{2}^{\prime}, x_{2}^{\prime \prime} \geq 0
\end{gathered}
$$

Convert to Standard Form (Step 4)

Four conversions to convert to standard form (See Section 29.1):

1. Convert minimization objective function to maximization objective function
2. Replace nonnegativity constraints
3. Equality constraints to inequality constraints
4. \geq constraints to \leq constraints

Convert to Standard Form: \geq to \leq

For each constraint:

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j} x_{j} \geq b \tag{15}
\end{equation*}
$$

replace with:

$$
\begin{equation*}
\sum_{j=1}^{n}-a_{j} x_{j} \leq-b \tag{16}
\end{equation*}
$$

Example:
Maximize:

$$
-10 x_{1}+5 x_{2}^{\prime}-5 x_{2}^{\prime \prime}
$$

Subject to:

$$
\begin{gathered}
x_{1}+x_{2}^{\prime}-x_{2}^{\prime \prime} \leq 20 \\
x_{1}+x_{2}^{\prime}-x_{2}^{\prime \prime} \geq 20 \\
x_{1} \leq 12 \\
x_{2}^{\prime}-x_{2}^{\prime \prime} \leq 16 \\
x_{1}, x_{2}^{\prime}, x_{2}^{\prime \prime} \geq 0
\end{gathered}
$$

Convert to Standard Form: \geq to $\leq(2)$

For each constraint:

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j} x_{j} \geq b \tag{15}
\end{equation*}
$$

replace with:

$$
\begin{equation*}
\sum_{j=1}^{n}-a_{j} x_{j} \leq-b \tag{16}
\end{equation*}
$$

Example:
Maximize:

$$
-10 x_{1}+5 x_{2}^{\prime}-5 x_{2}^{\prime \prime}
$$

Subject to:

$$
\begin{gathered}
x_{1}+x_{2}^{\prime}-x_{2}^{\prime \prime} \leq 20 \\
-x_{1}-x_{2}^{\prime}+x_{2}^{\prime \prime} \leq-20 \\
x_{1} \leq 12 \\
x_{2}^{\prime}-x_{2}^{\prime \prime} \leq 16 \\
x_{1}, x_{2}^{\prime}, x_{2}^{\prime \prime} \geq 0
\end{gathered}
$$

Standard Form \rightarrow Slack Form

Simplex algorithm works with equalities
Given:

$$
\begin{equation*}
a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots a_{i n} x_{n} \leq b_{i} \tag{17}
\end{equation*}
$$

can be converted into:

$$
\begin{gather*}
s_{i}=b_{i}-a_{i 1} x_{1}-a_{i 2} x_{2}-\ldots a_{i n} x_{n} \tag{18}\\
s_{i} \geq 0 \tag{19}
\end{gather*}
$$

where s_{i} is a slack variable (capturing the difference between the two sides in the inequality)

Instead of s_{i} we'll use x_{n+i}

Slack Form

All constraints are equalities (except when variables are required to be nonnegative)

Maximize:

$$
\begin{equation*}
z=3 x_{1}+x_{2}+2 x_{3} \tag{20}
\end{equation*}
$$

Subject to:

$$
\begin{gather*}
x_{4}=30-x_{1}-x_{2}-3 x_{3} \tag{21}\\
x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \tag{22}\\
x_{6}=36-4 x_{1}-x_{2}-2 x_{3} \tag{23}\\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0 \tag{24}
\end{gather*}
$$

Slack Form: Terms

Maximize:

$$
z=3 x_{1}+x_{2}+2 x_{3}
$$

Subject to:

$$
\begin{gathered}
x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
x_{6}=36-4 x_{1}-x_{2}-2 x_{3}
\end{gathered}
$$

Basic variables are on the left side and non-basic variables are on the right side of the equations
(the sets of basic and non-basic variables will change)

Standard Form \rightarrow Slack Form Exercise

Convert the following standard form linear program into slack form:
Maximize:

$$
2 x_{1}-6 x_{3}
$$

Subject to:

$$
\begin{gathered}
x_{1}+x_{2}-x_{3} \leq 7 \\
-3 x_{1}+x_{2} \leq-8 \\
x_{1}-2 x_{2}-2 x_{3} \leq 0 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

Standard Form \rightarrow Slack Form Exercise

Solution:

$$
\begin{gathered}
z=2 x_{1}-6 x_{3} \\
x_{4}=7-x_{1}-x_{2}+x_{3} \\
x_{5}=-8+3 x_{1}-x_{2} \\
x_{6}=-x_{1}+2 x_{2}+2 x_{3} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{gathered}
$$

Slack Form

Maximize:

$$
z=3 x_{1}+x_{2}+2 x_{3}
$$

Subject to:

$$
\begin{gathered}
x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
x_{6}=36-4 x_{1}-x_{2}-2 x_{3}
\end{gathered}
$$

3 equations and 6 unknowns (so infinite number of possibilities)

Slack Form

Maximize:

$$
z=3 x_{1}+x_{2}+2 x_{3}
$$

Subject to:

$$
\begin{gathered}
x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
x_{6}=36-4 x_{1}-x_{2}-2 x_{3}
\end{gathered}
$$

3 equations and 6 unknowns (so infinite number of possibilities) Focus on basic solution: set all variables on the right-hand side set to 0 .
Here: $x_{1}=0, x_{2}=0, x_{3}=0$, so $x_{4}=30, x_{5}=24, x_{6}=36$ and $z=0$

Goals

The simplex algorithm re-writes the set of equations and the object function so that there's different variables in the objective function. Re-writing the equations changes the basic solution (and therefore the objective function).
Re-writing the equations does not change the system or underlying problem.
Each iteration, increase the objective function by re-writing the equations.

Pivoting

Pivoting:

1. Select a non-basic variable (x_{e}, e for entering) whose coefficient in the objective function is positive
2. Increase x_{e} as much as possible
3. Switch x_{e} with a basic variable, x_{l} (/ for leaving)

Determining x_{e}

$$
z=3 x_{1}+x_{2}+2 x_{3}
$$

x_{1} has the largest positive coefficient in the objective function

$$
x_{e}=x_{1}
$$

Determining x_{l}

To maximize the objective function using x_{1} :

$$
\begin{gathered}
x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{gathered}
$$

$x_{1} \leq 30$

Determining x_{l}

To maximize the objective function using x_{1} :

$$
\begin{gathered}
x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{gathered}
$$

$x_{1} \leq 30$

$$
x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3}
$$

$x_{1} \leq \frac{24}{2}=12$

Determining x_{l}

To maximize the objective function using x_{1} :

$$
\begin{gathered}
x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{gathered}
$$

$x_{1} \leq 30$

$$
x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3}
$$

$x_{1} \leq \frac{24}{2}=12$

$$
x_{6}=36-4 x_{1}-x_{2}-2 x_{3}
$$

$x_{1} \leq \frac{36}{4}=9$

Determining x_{l}

To maximize the objective function using x_{1} :

$$
\begin{gathered}
x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{gathered}
$$

$x_{1} \leq 30$

$$
x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3}
$$

$x_{1} \leq \frac{24}{2}=12$

$$
x_{6}=36-4 x_{1}-x_{2}-2 x_{3}
$$

$x_{1} \leq \frac{36}{4}=9$
Choose the tightest constraint, so $x_{I}=x_{6}$.

First Pivot

$$
x_{6}=36-4 x_{1}-x_{2}-2 x_{3}
$$

Solve for x_{1} :

$$
\begin{equation*}
x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4} \tag{25}
\end{equation*}
$$

Now, re-write the other equations, substituting for x_{1} using Eqn. 25:

$$
\begin{gather*}
z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4} \tag{26}\\
x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4} \tag{27}\\
x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2} \tag{28}\\
x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}
\end{gather*}
$$

Verify nothing changed

$$
\begin{aligned}
& z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4} \\
& x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4} \\
& x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2} \\
& x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}
\end{aligned}
$$

In the beginning, with
$x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=30, x_{5}=24, x_{6}=36, z=0$. Is that still true?

Verify nothing changed

$$
\begin{aligned}
& z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4} \\
& x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4} \\
& x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2} \\
& x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}
\end{aligned}
$$

In the beginning, with
$x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=30, x_{5}=24, x_{6}=36, z=0$. Is that still true? Yes!
The thing that changed was the basic solution (set non-basic variables to 0): $x_{2}=0, x_{3}=0, x_{6}=0$ so
$z=27, x_{1}=9, x_{4}=21, x_{5}=6$.

Second Iteration

Continue to increase objective function.
Determine x_{e} :

$$
z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4}
$$

x_{3} has the largest positive coefficient in the objective function $x_{e}=x_{3}$

Determining x_{l}

To maximize the objective function using x_{3} :

$$
x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}
$$

$x_{3} \leq \frac{9}{\frac{1}{2}}=18$

$$
x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4}
$$

$x_{3} \leq \frac{21}{\frac{5}{2}}=\frac{42}{5}=8.4$

$$
x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2}
$$

$x_{3} \leq \frac{6}{4}=\frac{3}{2}=1.5$
Choose the tightest constraint, so $x_{I}=x_{5}$.

Second Pivot

$$
x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2}
$$

Solve for x_{3} :

$$
\begin{equation*}
x_{3}=\frac{3}{2}-\frac{3}{8} x_{2}-\frac{x_{5}}{4}+\frac{x_{6}}{8} \tag{29}
\end{equation*}
$$

Now, re-write the other equations, substituting for x_{3} using Eqn. 29:

$$
\begin{align*}
& z=\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16} \tag{30}\\
& x_{1}=\frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16} \tag{31}\\
& x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8} \tag{32}\\
& x_{4}=\frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16} \tag{33}
\end{align*}
$$

End of Second Iteration

New basic solution (set non-basic variables to 0):
$x_{2}=0, x_{5}=0, x_{6}=0$ so
$z=\frac{111}{4}=27.75, x_{1}=\frac{33}{4}, x_{3}=\frac{3}{2}, x_{4}=\frac{69}{4}$.

Third Iteration

Continue to increase objective function.
Determine x_{e} :

$$
\begin{equation*}
z=\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16} \tag{34}
\end{equation*}
$$

x_{2} is the only way to increase the objective function
$x_{e}=x_{2}$

Determining x_{l}

To maximize the objective function using x_{2} :

$$
x_{1}=\frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16}
$$

$x_{2} \leq \frac{\frac{33}{4}}{\frac{1}{16}}=132$

$$
x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8}
$$

$x_{2} \leq \frac{\frac{3}{2}}{\frac{3}{8}}=4$

$$
x_{4}=\frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16}
$$

$x_{2} \leq \infty$
Choose the tightest constraint, so $x_{l}=x_{3}$.

Third Pivot

$$
x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8}
$$

Solve for x_{2} :

$$
\begin{equation*}
x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \tag{35}
\end{equation*}
$$

Now, re-write the other equations, substituting for x_{2} using Eqn. 35:

$$
\begin{gather*}
z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \tag{36}\\
x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \tag{37}\\
x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \tag{38}\\
x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2} \tag{39}
\end{gather*}
$$

End of Third Iteration

New basic solution (set non-basic variables to 0):
$x_{3}=0, x_{5}=0, x_{6}=0$, so $z=28, x_{1}=8, x_{2}=4, x_{4}=18$.

Exercise

Apply the simplex algorithm to solve the following program:
Maximize:

$$
18 x_{1}+12.5 x_{2}
$$

Subject to:

$$
\begin{gathered}
x_{1}+x_{2} \leq 20 \\
x_{1} \leq 12 \\
x_{2} \leq 16 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

Exercise: Solution

$$
\begin{gathered}
z=18 x_{1}+12.5 x_{2} \\
x_{3}=20-x_{1}-x_{2} \\
x_{4}=12-x_{1} \\
x_{5}=16-x_{2} \\
x_{1 \ldots 6} \geq 0
\end{gathered}
$$

Basic solution: $x_{1}=0, x_{2}=0, x_{3}=20, x_{4}=12, x_{5}=16$, so $z=0$

Exercise: Solution

$$
\begin{gathered}
z=18 x_{1}+12.5 x_{2} \\
x_{e}=x_{1} \\
x_{3}=20-x_{1}-x_{2}
\end{gathered}
$$

$$
x_{1} \leq 20
$$

$$
x_{4}=12-x_{1}
$$

$$
x_{1} \leq 12
$$

$$
x_{5}=16-x_{2}
$$

$$
x_{1}=?
$$

$$
x_{I}=x_{4}
$$

Exercise: Solution

$$
\begin{gathered}
x_{1}=12-x_{4} \\
z=216+12.5 x_{2}-18 x_{4} \\
x_{1}=12-x_{4} \\
x_{3}=8-x_{2}+x_{4} \\
x_{5}=16-x_{2}
\end{gathered}
$$

Original basic solution (still holds):

$$
x_{1}=0, x_{2}=0, x_{3}=20, x_{4}=12, x_{5}=16, \text { so } z=0
$$

Exercise: Solution

$$
\begin{gathered}
z=216+12.5 x_{2}-18 x_{4} \\
x_{e}=x_{2} \\
x_{1}=12-x_{4}
\end{gathered}
$$

$x_{2}=?$

$$
x_{3}=8-x_{2}+x_{4}
$$

$x_{2} \leq 8$ (most restrictive)

$$
x_{5}=16-x_{2}
$$

$x_{2} \leq 16$

$$
\begin{gathered}
x_{I}=x_{3} \\
x_{2}=8-x_{3}+x_{4}
\end{gathered}
$$

Exercise: Solution

$$
\begin{gathered}
x_{2}=8-x_{3}+x_{4} \\
z=316-12.5 x_{3}-5.5 x_{4} \\
x_{1}=12-x_{4} \\
x_{2}=8-x_{3}+x_{4} \\
x_{5}=8+x_{3}-x_{4}
\end{gathered}
$$

Basic solution:
$x_{1}=12, x_{2}=8, x_{3}=0, x_{4}=0, x_{5}=8$, so $z=316$

