Linear Programming
CPSC 6109 - Advanced Algorithms

Dr. Hyrum D. Carroll

April 18, 2019
The most successful men in the end are those whose success is the result of steady accretion.

– Alexander Graham Bell
Overview

Linear programming is finding a set of coefficients that the maximize (or minimize) a linear function subject to constraints

Example:
Maximize:
\[3x_1 + 5x_2 \] (1)

Subject to:
\[x_1 + x_2 \leq 4 \] (2)
\[x_1 + 3x_2 \leq 6 \] (3)
\[x_1 \geq 0 \] (4)
\[x_2 \geq 0 \] (5)
Applications

- Airline crew scheduling
- Transportation network planning
- Communication network planning
- Oil exploration and refining
- Industrial production optimization
Terms

- Linear function:

\[f(x_1, x_2, \ldots, x_n) = a_1x_1 + a_2x_2 + \ldots + a_nx_n = \sum_{j=1}^{n} a_jx_j \]

(6)

- Linear constraints:
 - Linear equality
 \[f(x_1, x_2, \ldots, x_n) = b \]
 (7)
 - Linear inequalities
 \[f(x_1, x_2, \ldots, x_n) \leq b \]
 (8)
 \[f(x_1, x_2, \ldots, x_n) \geq b \]
 (9)
Terms (cont’d)

- Feasible region
 - convex region
 - e.g., gray area
- Objective value/feasible solution
 - any point in the feasible region

Figure 29.2a from Introduction to Algorithms 3rd Edition
Terms (cont’d 2)

- Objective function
 - linear function we’re maximizing/minimizing
- Optimal solution

Figure 29.2b from Introduction to Algorithms 3rd Edition
Background

Discovered by US mathematician George Dantzig in 1940.
Worst-case run-time is known to be exponential, that rarely happens in real-world applications.
Standard Form

All constraints are inequalities Maximize (objective function):

\[3x_1 + x_2 + 2x_3 \quad (10) \]

Subject to (constraints):

\[x_1 + x_2 + 3x_3 \leq 30 \quad (11) \]
\[2x_1 + 2x_2 + 5x_3 \leq 24 \quad (12) \]
\[4x_1 + x_2 + 2x_3 \leq 36 \quad (13) \]

Positivity constraints:

\[x_1, x_2, x_3 \geq 0 \quad (14) \]
Convert to Standard Form

Verify conditions in Section 29.1 are met to convert to standard form:
Standard Form → Slack Form

Simplex algorithm works with equalities

Given:

\[a_{i1}x_1 + a_{i2}x_2 + \ldots a_{in}x_n \leq b_i \] \hspace{1cm} (15)

can be converted into:

\[s_i = b_i - a_{i1}x_1 - a_{i2}x_2 - \ldots - a_{in}x_n \] \hspace{1cm} (16)

\[s_i \geq 0 \] \hspace{1cm} (17)

where \(s_i \) is a *slack variable* (capturing the difference between the two sides in the inequality)

Instead of \(s_i \) we’ll use \(x_{n+i} \)
Slack Form

All constraints are equalities (except when variables are required to be positive)

Maximize:

\[z = 3x_1 + x_2 + 2x_3 \] \hspace{1cm} (18)

Subject to:

\[x_4 = 30 - x_1 - x_2 - 3x_3 \] \hspace{1cm} (19)
\[x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \] \hspace{1cm} (20)
\[x_6 = 36 - 4x_1 - x_2 - 2x_3 \] \hspace{1cm} (21)

\[x_1, x_2, x_3, x_4, x_5, x_6 \geq 0 \] \hspace{1cm} (22)
Maximize:

\[z = 3x_1 + x_2 + 2x_3 \]

Subject to:

\[x_4 = 30 - x_1 - x_2 - 3x_3 \]
\[x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \]
\[x_6 = 36 - 4x_1 - x_2 - 2x_3 \]

Basic variables are on the left side and **non-basic variables** are on the right side of the equations

(the sets of basic and non-basic variables will change)
Convert the following standard form linear program into slack form:

Maximize:

\[2x_1 - 6x_3 \]

Subject to:

\[x_1 + x_2 - x_3 \leq 7 \]
\[-3x_1 + x_2 \leq -8 \]
\[x_1 - 2x_2 - 2x_3 \leq 0 \]
\[x_1, x_2, x_3 \geq 0 \]
Solution:

\[z = 2x_1 - 6x_3 \]
\[x_4 = 7 - x_1 - x_2 + x_3 \]
\[x_5 = -8 + 3x_1 - x_2 \]
\[x_6 = -x_1 + 2x_2 + 2x_3 \]
\[x_1, x_2, x_3, x_4, x_5, x_6 \geq 0 \]
Maximize:

\[z = 3x_1 + x_2 + 2x_3 \]

Subject to:

\[x_4 = 30 - x_1 - x_2 - 3x_3 \]
\[x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \]
\[x_6 = 36 - 4x_1 - x_2 - 2x_3 \]

3 equations and 6 unknowns (so infinite number of possibilities)
Maximize:

\[z = 3x_1 + x_2 + 2x_3 \]

Subject to:

\[x_4 = 30 - x_1 - x_2 - 3x_3 \]
\[x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \]
\[x_6 = 36 - 4x_1 - x_2 - 2x_3 \]

3 equations and 6 unknowns (so infinite number of possibilities)
Focus on basic solution: set all variables on the right-hand side set to 0.

Here: \(x_1 = 0, x_2 = 0, x_3 = 0 \), so \(x_4 = 30, x_5 = 24, x_6 = 36 \) and \(z = 0 \)
Goals

The simplex algorithm re-writes the set of equations and the objective function so that there’s different variables in the objective function. Re-writing the equations changes the basic solution (and therefore the objective function). Re-writing the equations does not change the system or underlying problem. Each iteration, increase the objective function by re-writing the equations.
Pivoting:

1. Select a non-basic variable (x_e, e for entering) whose coefficient in the objective function is positive
2. Increase x_e as much as possible
3. Switch x_e with a basic variable, x_l (l for leaving)
Determining x_e

$$z = 3x_1 + x_2 + 2x_3$$

x_1 has the largest positive coefficient in the objective function

$x_e = x_1$
Determining x_l

To maximize the objective function using x_1:

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$x_1 \leq 30$
Determining x_l

To maximize the objective function using x_1:

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_1 \leq 30$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_1 \leq \frac{24}{2} = 12$$
Determining x_l

To maximize the objective function using x_1:

\[x_4 = 30 - x_1 - x_2 - 3x_3 \]
\[x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \]
\[x_6 = 36 - 4x_1 - x_2 - 2x_3 \]

\[
x_1 \leq 30
\]
\[
x_1 \leq \frac{24}{2} = 12
\]
\[
x_1 \leq \frac{36}{4} = 9
\]
Determining x_l

To maximize the objective function using x_1:

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$x_1 \leq 30$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$x_1 \leq \frac{24}{2} = 12$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$x_1 \leq \frac{36}{4} = 9$

$x_1, x_2, x_3, x_4, x_5, x_6 \geq 0$

Choose the tightest constraint, so $x_l = x_6$.
First Pivot

\[x_6 = 36 - 4x_1 - x_2 - 2x_3 \]

Solve for \(x_1 \):

\[x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4} \] \hspace{1cm} (23)

Now, re-write the other equations, substituting for \(x_1 \) using Eqn. 23:

\[z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4} \] \hspace{1cm} (24)

\[x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4} \] \hspace{1cm} (25)

\[x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4} \] \hspace{1cm} (26)

\[x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2} \] \hspace{1cm} (27)
Verify nothing changed

\[z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4} \]

\[x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4} \]

\[x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4} \]

\[x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2} \]

In the beginning, with
\[x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 30, x_5 = 24, x_6 = 36, z = 0. \] Is that still true?
Verify nothing changed

\[
z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}
\]

\[
x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}
\]

\[
x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}
\]

\[
x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}
\]

In the beginning, with \(x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 30, x_5 = 24, x_6 = 36, z = 0\). Is that still true? Yes!
The thing that changed was the basic solution (set non-basic variables to 0): \(x_1 = 9, x_2 = 0, x_3 = 0, x_4 = 21, x_5 = 6, x_6 = 0\), so \(z = 27\).
Second Iteration

Continue to increase objective function.
Determine x_e:

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

x_3 has the largest positive coefficient in the objective function
$x_e = x_3$
Determining x_l

To maximize the objective function using x_3:

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_3 \leq \frac{9}{1.5} = 18$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_3 \leq \frac{21}{5.2} = \frac{42}{5} = 8.4$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

$$x_3 \leq \frac{6}{4} = \frac{3}{2} = 1.5$$

Choose the tightest constraint, so $x_l = x_5$.
Second Pivot

\[x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2} \]

Solve for \(x_3 \):

\[x_3 = \frac{3}{2} - \frac{3}{8}x_2 - \frac{x_5}{4} + \frac{x_6}{8} \] \hspace{1cm} (28)

Now, re-write the other equations, substituting for \(x_3 \) using Eqn. 28:

\[z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16} \] \hspace{1cm} (29)

\[x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16} \] \hspace{1cm} (30)

\[x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8} \] \hspace{1cm} (31)

\[x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16} \] \hspace{1cm} (32)
New basic solution (set non-basic variables to 0):

\[x_1 = \frac{33}{4}, x_2 = 0, x_3 = \frac{3}{2}, x_4 = \frac{69}{4}, x_5 = 0, x_6 = 0, \text{ so} \]

\[z = \frac{1111}{4} = 27.75. \]
Third Iteration

Continue to increase objective function. Determine x_e:

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$ \hspace{1cm} (33)

x_2 is the only way to increase the objective function

$x_e = x_2$
Determining x_l

To maximize the objective function using x_2:

\[x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16} \]

\[x_2 \leq \frac{\frac{33}{4}}{\frac{1}{16}} = 132 \]

\[x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8} \]

\[x_2 \leq \frac{\frac{3}{2}}{\frac{3}{8}} = 4 \]

\[x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16} \]

\[x_2 \leq \infty \]

Choose the tightest constraint, so $x_l = x_3$.
Third Pivot

\[x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8} \]

Solve for \(x_2 \):

\[x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3} \]

(34)

Now, re-write the other equations, substituting for \(x_2 \) using Eqn. 34:

\[z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3} \]

(35)

\[x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3} \]

(36)

\[x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3} \]

(37)

\[x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2} \]

(38)
New basic solution (set non-basic variables to 0):
\[x_1 = 8, \quad x_2 = 4, \quad x_3 = 0, \quad x_4 = 18, \quad x_5 = 0, \quad x_6 = 0, \] so \(z = 28. \)
Exercise

Apply the simplex algorithm to solve the following program:

Maximize:

\[18x_1 + 12.5x_2 \]

Subject to:

\[x_1 + x_2 \leq 20 \]
\[x_1 \leq 12 \]
\[x_2 \leq 16 \]
\[x_1, x_2 \geq 0 \]