Dynamic Programming Hyrum D. Carroll (Based on slides prepared by Suk Jin Lee)

Dynamic programming

- It is used, when the solution can be *recursively* described in terms of solutions to subproblems (*optimal substructure*)
- Algorithm solves each subproblem just once and stores its answer in memory (a table) for later use
- More efficient than "*brute-force methods*", which solve the same subproblems over and over again
- Call such a solution *an* optimal solution to the problem, as opposed to *the* optimal solution

Dynamic programming

- Follow a sequence of four steps:
 - 1. Characterize the structure of an optimal solution.
 - 2. Recursively define the value of an optimal solution.
 - 3. Compute the value of an optimal solution, typically in a bottom-up fashion.
 - 4. Construct an optimal solution from computed information.

- How to cut steel rods into pieces in order to maximize the revenue you can get?
 - Each cut is free
 - Rod lengths are always an integral number of inches
- Definition
 - **Input**: A rod of length *n* inches and a table of prices *p_i*, for *i* = 1, 2,..., *n*
 - **Output**: determine the maximum revenue *r_n* obtainable by cutting up the rod and selling the pieces

- Example
 - A table of pieces p_i

Length <i>i</i>	1	2	3	4	5	6	7	8	9	10
Price p_i	1	5	8	9	10	17	17	20	24	30

• When n = 4, cut the length n in 2^{n-1} different ways

- When n = 7, a rod of length 7 is cut into three pieces 7 = 2 + 2 + 3 two of length 2 and one of length 3
- If an optimal solution cuts the rod into k pieces for $1 \le k \le n$, then an optimal decomposition

 $n = i_1 + i_2 + \dots + i_k$

• Provides maximum corresponding revenue

 $r_n = p_{i_1} + p_{i_2} + \ldots + p_{i_k}$

Length <i>i</i>	1	2	3	4	5	6	7	8	9	10
Price p_i	1	5	8	9	10	17	17	20	24	30
Maximum	revenu	r_2 r_3 r_4 r_5 r_6	= 1 = 5 = 8 = 10 = 13 = 17 = 18	from from from from from	soluti soluti soluti soluti soluti soluti soluti	on $2 =$ on $3 =$ on $4 =$ on $5 =$ on $6 =$	2 (no $\frac{1}{2}$) 3 (no $\frac{1}{2}$) 2 + 2, 6 (no $\frac{1}{2}$)	cuts), cuts),	2+2+	3.
		r_8	= 22	from	soluti soluti	on 8 =	2+6,			.,
			= 25 = 30	mm			······	o cuts),	
First nic		flon	ath	inn	d + b		nom -	ind	onof	long

• First piece of length *i* and then a remainder of length n - i

$$r_n = \max_{\mathbf{1} \le i \le n} (p_i + r_{n-i})$$

Recursive top-down implementation

Input: an array p[1 . . n] and an integer n

CUT-ROD(p, n) // p: prices 1. if n == 02. return 0 3. $q = -\infty$ // Initialize the maximum revenue q to $-\infty$ 4. for i = 1 to n5. $q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))$ // $r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$ 6. return q

Each time you increase *n* by 1, your program's running time would approximately double.

Recursive top-down implementation

Recursion tree

Recursive calls resulting from a call CUT-ROD(*p*, *r*)
 for *n* = 4

Recursive top-down implementation

- Recursion tree
 - Lots of repeated subproblems
 - Solve the subproblem for size 2 twice, for size 1 four times, and for size 0 eight times
 - Exponential growth

$$T(n) = \begin{cases} 1 & if \quad n = 0\\ 1 + \sum_{j=0}^{n-1} T(j) & if \quad n \ge 1 \end{cases}$$

• Solution to recurrence: $T(n) = 2^n$

Dynamic-programming solution

Dynamic-programming solution

- Instead of solving the same subproblems repeatedly, arrange to solve each subproblem just once.
- Save the solution to a subproblem in a table, and refer back to the table whenever we revisit the subproblem.
- "Store, don't recompute" ⇒ time-memory trade-off
- Can turn an exponential-time solution into a polynomial-time solution.
- Two basic approaches: top-down with memoization¹, and bottom-up

¹ This is not a misspelling. *Memoization* comes from *memo*, since the technique consists of recording a value so that we can look it up later

- Top-down approach with memoization
 - To find the solution to a subproblem, first look in the table.
 - If the answer is there, use it.
 - Otherwise, compute the solution to the subproblem and then store the solution in the table for future use
 - Memoized ⇒ it "remembers" what results it has computed previously

• Top-down approach with memoization

MEMOIZED-CUT-ROD(p, n)

- 1. Let $r[0 \dots n]$ be a new array
- **2.** for i = 0 to n
- 3. $r[i] = -\infty$ // Initializes a new array $r[0 \dots n]$ with $-\infty$ (unknown)
- **4.** return MEMOIZED-CUT-ROD-AUX(p, n, r)

Top-down approach with memoization

MEMOIZED-CUT-ROD-AUX(p, n, r)

- **1. if** $r[n] \ge 0$ // check to see whether the desired value is already known
- **return** r[n] // if the desired value is known 2.
- **3.** if n = 0 // compute the desired value q in the usual manner if it is unknown q=04.
 - **5.** else $q = -\infty$ // the solution is unknown

- $q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n-i, r))$ 8. r[n] = q // Save the computed value q in r[n]
- **9.** return q

6.

7.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of the previous procedure, CUT-ROD.

Bottom-up approach

BOTTOM-UP-CUT-ROD(p, n)

- 1. Let r[0 . . n] be a new array // create a new array to save the results
- 2. r[0] = 0 // a rod of length 0 earns no revenue
- **3.** for j = 1 to n
- 4. $q = -\infty$ 5. **for** i = 1 to j // i < j
- 6. $q = \max(q, p[i] + r[j i])$
- 7. r[j] = q // Save the solution to the subproblem of size *j* in r[n]
- **8. return** *r*[*n*]

Directly references array entry r[j - i] instead of making a recursive call to solve the subproblem j - i

Solve each subproblem of size *j*, for *j*

= 1, 2,..., *n*, in order of increasing size

Running time

- BOTTOM-UP-CUT-ROD
 - Doubly-nested loop structure
 - Number of iterations of inner for loop forms an arithmetic series
- Memoized-Cut-Rod
 - **for** loop of lines 6 7 iterates *n* times
 - Total number of iterations forms an arithmetic series

• Running time

- BOTTOM-UP-CUT-ROD
 - Doubly-nested loop structure
 - Number of iterations of inner for loop forms an arithmetic series
 - $\Rightarrow \Theta(n^2)$
- Memoized-Cut-Rod
 - **for** loop of lines 6 7 iterates *n* times
 - Total number of iterations forms an arithmetic series $\Rightarrow \Theta(n^2)$

Subproblem graphs

- How to understand the subproblems involved and how they depend on each other.
- Directed graph:
 - Vertex labels: sizes of the corresponding subproblems
 - Directed edge (x, y): need a solution to subproblem y when solving subproblem x
- *Example*: For the rod-cutting problem with *n* = 4

- So far, have focused on computing the *value* of an optimal solution, rather than the *choices* that produced an optimal solution
- Extend the bottom-up approach to record not just optimal values, but optimal choices
 - Save the optimal choices in a separate table (*s*[])
 - Then use a separate procedure to print the optimal choices

Extended version of Воттом-UP-Сит-Rop

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)

- 1. Let r[0 ... n] and s[1 ... n] be new arrays $// s_j$: optimal size of the first piece to cut
- 2. r[0] = 0 // a rod of length 0 earns no revenue
- **3.** for j = 1 to n

$$4. \qquad q = -\infty$$

- 5. **for** i = 1 to j // i < j
- 6. **if** q < p[i] + r[j-i]
- 7. q = p[i] + r[j-i]
- 8. S[j] = i // hold the optimal size *i* of the first piece to cut off

9. r[j] = q // Save the solution to the subproblem of size *j* in r[n]**10. return** *r* and *s*

• To print out the cuts made in an optimal solution:

PRINT-CUT-ROD-SOLUTION(p, n)

- 1. (r, s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
- **2.** while *n* > 0
- 3. print s[n]
- $4. \qquad n=n-s[n]$

Length <i>i</i>	1	2	3	4		5	6	7	8	9	10
Price p_i	1	5	8	9		10	17	17	20	24	30
Length <i>i</i>	0	1	2	3	4	5	6	7	8	9	10
<i>r</i> [<i>i</i>]	0										
<i>s</i> [<i>i</i>]											
	r	[0] = 0)								

Length <i>i</i>	1	2	3	4	4	5	6	7	8	9	10		
Price p_i	1	5	8	9	1	0	17	17	20	24	30		
Length <i>i</i>	0	1	2	3	4	5	6	7	8	9	10		
<i>r</i> [<i>i</i>]	0	1											
<i>s</i> [<i>i</i>]		1											
	if $q < p[i] + r[j-i] = p[1] + r[0] = 1 + 0 = 1 // j = 1, i = 1$												
	q = p[1] + r[0] = 1												
	s[1] = 1 // s[j] = i												

1	2	3	4	5	6	7	8	9	10				
1	5	8	9	10	17	17	20	24	30				
0	1	2	3	4 4	56	7	8	9	10				
0	1	5											
	1	2											
if $q < p[i] + r[j-i] = p[2] + r[0] = 5 + 0 = 5$ // $j = 2, i = 2$ q = p[2] + r[0] = 5 s[2] = 2 // $s[j] = i$													
	1 0 0	1 5 0 1 0 1 1	1 5 8 0 1 2 0 1 5 1 2 if q < p[i] + r[j	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Length <i>i</i>	1	2	3	4		5	6	7	8	9	10			
Price p_i	1	5	8	9	1	0	17	17	20	24	30			
Length <i>i</i>	0	1	2	3	4	5	6	7	8	9	10			
<i>r</i> [<i>i</i>]	0	1	5	8										
<i>s</i> [<i>i</i>]		1	2	3										
	if $q < p[i] + r[j-i] = p[3] + r[0] = 8 + 0 = 8$ // $j = 3, i = 3$													
	q = p[3] + r[0] = 8													
			<i>s</i> [3] =	= 3	// s[j]	=i								

Length <i>i</i>	1	2	3	4	5		6	7	8	9	10		
Price p_i	1	5	8	9	10)	17	17	20	24	30		
Length <i>i</i>	0	1	2	3	4	5	6	7	8	9	10		
<i>r</i> [<i>i</i>]	0	1	5	8	10								
<i>s</i> [<i>i</i>]		1	2	3	2								
if $q < p[i] + r[j - i] = p[2] + r[2] = 5 + 5 = 10$ // $j = 4, i = 2$ q = p[2] + r[2] = 10													
			s[4] =	= 2 /	'/ s[j] =	= 1							

Length <i>i</i>	1	2	3	4	4	5	6	7	8	9	10		
Price p_i	1	5	8	9	1	0	17	17	20	24	30		
Length <i>i</i>	0	1	2	3	4	5	6	7	8	9	10		
<i>r</i> [<i>i</i>]	0	1	5	8	10	13							
s[i]		1	2	3	2	2							
if $q < p[i] + r[j-i] = p[2] + r[3] = 5 + 8 = 13$ // $j = 5, i = 2$ q = p[2] + r[3] = 13 s[5] = 2 // $s[j] = i$													

• Example: EXTENDED-BOTTOM-UP-CUT-ROD(*p*, 10) returns

Length <i>i</i>	1	2	3	4	-	5	6	7	8	9	10		
Price p_i	1	5	8	9)	10	17	17	20	24	30		
Length <i>i</i>	0	1	2	3	4	5	6	7	8	9	10		
<i>r</i> [<i>i</i>]	0	1	5	8	10	13	17						
<i>s</i> [<i>i</i>]		1	2	3	2	2	6						
	if $q < p[i] + r[j-i] = p[6] + r[0] = 17 + 0 = 17 // j = 6, i = 6$												

if q < p[i] + r[j-i] = p[6] + r[0] = 17 + 0 = 17 // j = 6, i = 6 q = p[6] + r[0] = 17s[6] = 6 // s[j] = i

Length <i>i</i>	1	2	3	4	•	5	6	7	8	9	10	
Price p_i	1	5	8	9		10	17	17	20	24	30	
Length <i>i</i>	0	1	2	3	4	5	6	7	8	9	10	
<i>r</i> [<i>i</i>]	0	1	5	8	10	13	17	18				
<i>s</i> [<i>i</i>]		1	2	3	2	2	6	1				
if $q < p[i] + r[j-i] = p[1] + r[6] = 1 + 17 = 18 // j = 7, i = 1$												
			q = p	[1] +	<i>r</i> [6]	= 18						
			<i>s</i> [7] =	= 1	// s[j]] = i						

• Example: EXTENDED-BOTTOM-UP-CUT-ROD(*p*, 10) returns

Length <i>i</i>	1	2	3	4		5	6	7	8	9	10	
Price p_i	1	5	8	9]	10	17	17	20	24	30	
Length <i>i</i>	0	1	2	3	4	5	6	7	8	9	10	
<i>r</i> [<i>i</i>]	0	1	5	8	10	13	17	18	22			
<i>s</i> [<i>i</i>]		1	2	3	2	2	6	1	2			
if $q < p[i] + r[j-i] = p[2] + r[6] = 5 + 17 = 22 // j = 8, i = 2$												
			q = p	[2] +	<i>r</i> [6]	= 22						
			<i>s</i> [8] =	= 2 /	'/ s[j]	=i						

31

Length <i>i</i>	1	2	3	4		5	6	7	8	9	10	
Price p_i	1	5	8	9]	10	17	17	20	24	30	
Length <i>i</i>	0	1	2	3	4	5	6	7	8	9	10	
<i>r</i> [<i>i</i>]	0	1	5	8	10	13	17	18	22	25		
<i>s</i> [<i>i</i>]		1	2	3	2	2	6	1	2	3		
if $q < p[i] + r[j-i] = p[3] + r[6] = 8 + 17 = 25 // j = 9, i = 3$												
			q = p	[6] +	<i>r</i> [3]	= 25						
			<i>s</i> [9] =	= 3 /	// s[j]	=i						

Length <i>i</i>	1	2	3	4		5	6	7	8	9	10	
Price p_i	1	5	8	9	1	0	17	17	20	24	30	
Length <i>i</i>	0	1	2	3	4	5	6	7	8	9	10	
<i>r</i> [<i>i</i>]	0	1	5	8	10	13	17	18	22	25	30	
s[i]		1	2	3	2	2	6	1	2	3	10	
if $q < p[i] + r[j - i] = p[10] + r[0] = 30 + 0 = 30 // j = 10$, $i = 10$ q = p[10] + r[0] = 30 s[10] = 10 // s[j] = i												