Dynamic Programming
 Hyrum D. Carroll
 (Based on slides prepared by Suk Jin Lee)

Dynamic programming

- It is used, when the solution can be recursively described in terms of solutions to subproblems (optimal substructure)
- Algorithm solves each subproblem just once and stores its answer in memory (a table) for later use
- More efficient than "brute-force methods", which solve the same subproblems over and over again
- Call such a solution an optimal solution to the problem, as opposed to the optimal solution

Dynamic programming

- Follow a sequence of four steps:

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution, typically in a bottom-up fashion.
4. Construct an optimal solution from computed information.

Rod-cutting Problem

- How to cut steel rods into pieces in order to maximize the revenue you can get?
- Each cut is free
- Rod lengths are always an integral number of inches
- Definition
- Input: A rod of length n inches and a table of prices p_{i}, for $i=1,2, \ldots, n$
- Output: determine the maximum revenue r_{n} obtainable by cutting up the rod and selling the pieces

Rod-cutting Problem

- Example
- A table of pieces p_{i}

Length i	1	2	3	4	5	6	7	8	9	10
Price p_{i}	1	5	8	9	10	17	17	20	24	30

- When $n=4$, cut the length n in 2^{n-1} different ways

Rod-cutting Problem

- When $n=7$, a rod of length 7 is cut into three pieces $7=2+2+3-$ two of length 2 and one of length 3
- If an optimal solution cuts the rod into k pieces for $1 \leq k \leq n$, then an optimal decomposition

$$
n=i_{1}+i_{2}+\ldots+i_{k}
$$

- Provides maximum corresponding revenue

$$
r_{n}=p_{i_{1}}+p_{i_{2}}+\ldots+p_{i_{k}}
$$

Rod-cutting Problem

Length i	1	2	3	4	5	6	7	8	9	10
Price p_{i}	1	5	8	9	10	17	17	20	24	30

Maximum revenue: $r_{1}=1$ from solution $1=1$ (no cuts),
$r_{2}=5 \quad$ from solution $2=2$ (no cuts),
$r_{3}=8$ from solution $3=3$ (no cuts),
$r_{4}=10$ from solution $4=2+2$,
$r_{5}=13$ from solution $5=2+3$,
$r_{6}=17$ from solution $6=6$ (no cuts),
$r_{7}=18$ from solution $7=1+6$ or $7=2+2+3$,
$r_{8}=22$ from solution $8=2+6$,
$r_{9}=25$ from solution $9=3+6$,
$r_{10}=30$ from solution $10=10$ (no cuts),

- First piece of length i and then a remainder of length $n-i$

$$
r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right)
$$

Recursive top-down implementation

Input: an array $p[1 . . n]$ and an integer n
Cut-Rod $(p, n) \quad / / p$: prices

1. if $n=0$
2. return 0
3. $q=-\infty \quad / /$ Initialize the maximum revenue q to $-\infty$
4. for $i=1$ to n
5. $q=\max (q, p[i]+\operatorname{CUT}-\operatorname{Rod}(p, n-i)) \quad / / r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right)$
6. return q

Each time you increase n by 1 , your program's running time would approximately double.

Recursive top-down implementation

- Recursion tree
- Recursive calls resulting from a call Cut-Rod (p, r) for $n=4$

Recursive top-down implementation

- Recursion tree
- Lots of repeated subproblems
- Solve the subproblem for size 2 twice, for size 1 four times, and for size 0 eight times
- Exponential growth

$$
T(n)=\left\{\begin{array}{ccc}
1 & \text { if } & n=0 \\
1+\sum_{j=0}^{n-1} T(j) & \text { if } & n \geq 1
\end{array}\right.
$$

- Solution to recurrence: $T(n)=2^{n}$

Dynamic-programming solution

Dynamic-programming solution

- Instead of solving the same subproblems repeatedly, arrange to solve each subproblem just once.
- Save the solution to a subproblem in a table, and refer back to the table whenever we revisit the subproblem.
- "Store, don't recompute" \Rightarrow time-memory trade-off
- Can turn an exponential-time solution into a polynomial-time solution.
- Two basic approaches: top-down with memoization ${ }^{1}$, and bottom-up

[^0]
Using dynamic programming for optimal rod cutting

- Top-down approach with memoization
- To find the solution to a subproblem, first look in the table.
- If the answer is there, use it.
- Otherwise, compute the solution to the subproblem and then store the solution in the table for future use
- Memoized \Rightarrow it "remembers" what results it has computed previously

Using dynamic programming for optimal rod cutting

- Top-down approach with memoization

Memoized-CUT-Rod (p, n)

1. Let $r[0 \ldots n]$ be a new array
2. for $i=0$ to n
3. $r[i]=-\infty \quad / /$ Initializes a new array $r[0 \ldots n]$ with $-\infty$ (unknown)
4. return MEMOIZED-CUT-ROD-AUX (p, n, r)

Using dynamic programming for optimal rod cutting

- Top-down approach with memoization
$\operatorname{MEMOIZED}-C U T-R o d-A U X(p, n, r)$

1. if $r[n] \geq 0 \quad / /$ check to see whether the desired value is already known
2. return $r[n] \quad / /$ if the desired value is known
$\left[\begin{array}{l}\text { 3. if } n==0 \\ \text { 4. } q=0 \\ \text { 5. else } q=-\infty\end{array} / /\right.$ compute the desired value q in the usual manner if it is unknown
3. else $q=-\infty \quad / /$ the solution is unknown
4. for $i=1$ to n
5.

$$
q=\max (q, p[i]+\operatorname{MEMOIZED-CUT-ROD-AUX}(p, n-i, r))
$$

8. $r[n]=q \quad / /$ Save the computed value q in $r[n]$
9. return q

The procedure Memoized-Cut-Rod-Aux is just the memoized version of the previous procedure, CUT-ROD.

Using dynamic programming for optimal rod cutting

- Bottom-up approach

Воттом-UP-CUT-Rod (p, n)

1. Let $r[0 \ldots n]$ be a new array // create a new array to save the results
2. $r[0]=0 \quad / /$ a rod of length 0 earns no revenue
3. for $j=1$ to n
4. $q=-\infty$
$\begin{array}{ll}\text { 5. } & \text { for } i=1 \text { to } j \quad / / i<j \\ \text { 6. } & q=\max (q, p[i]+r[j-i])\end{array}$
$=1,2, \ldots, n$, in order of increasing size
5. $r[j]=q$ // Save the solution to the sùbproblem of size j in $r[n]$
6. return $r[n]$

Directly references array entry $r[j-i]$ instead of making a recursive call to solve the subproblem $j-i$

Using dynamic programming for optimal rod cutting
 - Running time

- Bottom-Up-Cut-Rod
- Doubly-nested loop structure
- Number of iterations of inner for loop forms an arithmetic series
- Memoized-Cut-Rod
- for loop of lines 6-7 iterates n times
- Total number of iterations forms an arithmetic series

Using dynamic programming for optimal rod cutting
 - Running time

- Bottom-Up-Cut-Rod
- Doubly-nested loop structure
- Number of iterations of inner for loop forms an arithmetic series
$\Rightarrow \Theta\left(n^{2}\right)$
- Memoized-Cut-Rod
- for loop of lines 6-7 iterates n times
- Total number of iterations forms an arithmetic series
$\Rightarrow \Theta\left(n^{2}\right)$

Subproblem graphs

- How to understand the subproblems involved and how they depend on each other.
- Directed graph:
- Vertex labels: sizes of the corresponding subproblems
- Directed edge (x, y) : need a solution to subproblem y when solving subproblem x
- Example: For the rod-cutting problem with $n=4$

Reconstructing a solution

- So far, have focused on computing the value of an optimal solution, rather than the choices that produced an optimal solution
- Extend the bottom-up approach to record not just optimal values, but optimal choices
- Save the optimal choices in a separate table (s[])
- Then use a separate procedure to print the optimal choices

Reconstructing a solution

- Extended version of BOTTOM-Up-CUT-ROD

Extended-Bottom-Up-Cut-Rod (p, n)

1. Let $r[0 \ldots n]$ and $s[1 \ldots n]$ be new arrays $/ / s_{j}$: optimal size of the first piece to cut
2. $r[0]=0 \quad / /$ a rod of length 0 earns no revenue
3. for $j=1$ to n
4. $q=-\infty$
5. for $i=1$ to $j \quad \| i<j$
6. if $q<p[i]+r[j-i]$
7.

$$
q=p[i]+r[j-i]
$$

8. $\quad s[j]=i \quad / /$ hold the optimal size i of the first piece to cut off
9. $r[j]=q / /$ Save the solution to the subproblem of size j in $r[n]$
10. return r and s

Reconstructing a solution

- To print out the cuts made in an optimal solution:

PRINT-CUT-ROD-SOLUTION (p, n)

1. $(r, s)=\operatorname{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)$
2. while $n>0$
3. print $s[n]$
4. $n=n-s[n]$

Reconstructing a solution

- Example: Extended-Bottom-Up-Cut-Rod $(p, 10)$ returns

Length i	1	2	3	4	5	6	7	8	9	10	
Price p_{i}	1	5	8	9	10	17	17	20	24	30	
Length i	0	1	2	3	4	5	6	7	8	9	10
$r[i]$	0										
$s[i]$											
		$r[0]=0$									

Reconstructing a solution

- Example: Extended-Bottom-Up-Cut-Rod $(p, 10)$ returns

Length i	1	2		3	4		5	6	7	8	9	10
Price p_{i}	1	5		8	9		10	17	17	20	24	30
Length i	0	1	2	3	3	4	5	$5 \quad 6$	7	8	9	10
$r[i]$	0	1										
$s[i]$		1										
if $q<p[i]+r[j-i]=p[1]+r[0]=1+0=1 / / j=1, i=1$												
$q=p[1]+r[0]=1$												
$s[1]=1 \quad / / s[j]=i$												

Reconstructing a solution

- Example: Extended-Bottom-Up-Cut-Rod $(p, 10)$ returns
\(\left.\begin{array}{c|ccccccccccc}Length i \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10

\hline Price p_{i} \& 1 \& 5 \& 8 \& 9 \& 10 \& 17 \& 17 \& 20 \& 24 \& 30\end{array}\right]\)| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Length i | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

Reconstructing a solution

- Example: Extended-Bottom-Up-Cut-Rod $(p, 10)$ returns
\(\left.\begin{array}{c|ccccccccccc}Length i \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10

\hline Price p_{i} \& 1 \& 5 \& 8 \& 9 \& 10 \& 17 \& 17 \& 20 \& 24 \& 30\end{array}\right]\)| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Length i | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

Reconstructing a solution

- Example: Extended-Bottom-Up-Cut-Rod $(p, 10)$ returns

Reconstructing a solution

- Example: Extended-Bottom-Up-Cut-Rod $(p, 10)$ returns

Length i	1	2	3		4		5	6	7	8	9	10
Price p_{i}	1	5	8		9		10	17	17	20	24	30
Length i	0	1	2	3		4	5	$5 \quad 6$	7	8	9	10
$r[i]$	0	1	5	8		10						
$s[i]$		1	2	3		2	2					
	$\begin{gathered} \text { if } q<p[i]+r[j-i]=p[2]+r[3]=5+8=13 \\ q=p[2]+r[3]=13 \\ s[5]=2 \quad / / s[j]=i \end{gathered}$											$=5$

Reconstructing a solution

- Example: Extended-Bottom-Up-Cut-Rod $(p, 10)$ returns

Reconstructing a solution

- Example: Extended-BOTTOM-Up-CuT-ROD($p, 10$) returns

Length i	1	2	3	4	5	6	7	8	9	10	
Price p_{i}	1	5	8	9	10	17	17	20	24	30	
Length i	0	1	2	3	4	5	6	7	8	9	10
$r[i]$	0	1	5	8	10	13	17	18			
$s[i]$		1	2	3	2	2	6	1			

Reconstructing a solution

- Example: Extended-BOTTOM-Up-CuT-ROD($p, 10$) returns

Reconstructing a solution

- Example: Extended-BOTTOM-Up-CuT-ROD($p, 10$) returns

Length i	1		2	3		4		5	6	7	8	9	10
Price p_{i}	1		5	8		9		10	17	17	20	24	30
Length i	0	1		2	3		4	5	6	7	8	9	10
$r[i]$	0	1		5	8	1	10	13	17	18	22	25	
$s[i]$		1		2	3		2	2	6	1	2	3	
	$\begin{gathered} \text { if } q<p[i]+r[j-i]=p[3]+r[6]=8+17=25 / / j=9, i=3 \\ q=p[6]+r[3]=25 \\ s[9]=3 \quad \text { I/ } s[j]=i \end{gathered}$												

Reconstructing a solution

- Example: Extended-BOTTOM-Up-CuT-ROD($p, 10$) returns

Length i	1	2		3		4		5	6	7	8	9	10
Price p_{i}	1	5		8		9		10	17	17	20	24	30
Length i	0	1	2		3	4		5	6	7	8	9	10
$r[i]$	0	1		5	8		10	13	17	18	22	25	30
$s[i]$		1		2	3		2	2	6	1	2	3	10
	$\begin{aligned} & \text { if } q<p[i]+r[j-i]=p[10]+r[0]=30+0=30 / / j=10, i=10 \\ & \quad q=p[10]+r[0]=30 \\ & s[10]=10 / / s[j]=i \end{aligned}$												

[^0]: ${ }^{1}$ This is not a misspelling. Memoization comes from memo, since the technique consists of recording a value so that we can look it up later

