
Hyrum	D.	Carroll
(Based	on slides prepared	by	Suk	Jin Lee)

Dynamic programming
� It	is	used,	when	the	solution	can	be	recursively
described	in	terms	of	solutions	to	subproblems	
(optimal	substructure)

� Algorithm	solves	each	subproblem	just	once	and	
stores	its	answer	in	memory (a	table)	for	later	use

� More	efficient	than	“brute-force	methods”,	which	solve	
the	same	subproblems	over	and	over	again

� Call	such	a	solution	an optimal	solution	to	the	
problem,	as	opposed	to	the optimal	solution

2

Dynamic programming
� Follow	a	sequence	of	four	steps:

1. Characterize	the	structure	of	an	optimal	solution.
2. Recursively	define	the	value	of	an	optimal	solution.
3. Compute	the	value	of	an	optimal	solution,	typically	in	

a	bottom-up	fashion.
4. Construct	an	optimal	solution	from	computed	

information.

3

Rod-cutting Problem
� How	to	cut	steel	rods	into	pieces	in	order	to	maximize	
the	revenue	you	can	get?
� Each	cut	is	free
� Rod	lengths	are	always	an	integral	number	of	inches

� Definition
� Input:	A	rod	of	length	n inches	and	a	table	of	prices	pi,	
for	i =	1,	2,…,	n

� Output:	determine	the	maximum	revenue	rn obtainable	
by	cutting	up	the	rod	and	selling	the	pieces

4

Rod-cutting Problem
� Example

� A	table	of	pieces	pi

� When	n = 4,	cut	the	length	n in	2n-1 different	ways

Length i 1 2 3 4 5 6 7 8 9 10
Price pi 1 5 8 9 10 17 17 20 24 30

9 1 8 5 5 8 1

1 1 5 1 5 1 5 1 1 1 1 1 1

5

Rod-cutting Problem
� When	n = 7,	a	rod	of	length	7 is	cut	into	three	pieces

7 = 2 + 2 + 3 – two	of	length	2 and	one	of	length	3
� If	an	optimal	solution	cuts	the	rod	into	k pieces
for	1 £ k £ n,	then	an	optimal	decomposition

n = i1 + i2 + ... + ik
� Provides	maximum	corresponding	revenue

kiiin pppr +++= !
21

6

Rod-cutting Problem

� First	piece	of	length	i and	then	a	remainder	of	length	n – i

Maximum	revenue: r1 = 1 from	solution	1 = 1 (no	cuts),
r2 = 5 from	solution	2 = 2 (no	cuts),
r3 = 8 from	solution	3 = 3 (no	cuts),
r4 = 10 from	solution	4 = 2 + 2,
r5 = 13 from	solution	5 = 2 + 3,
r6 = 17 from	solution	6 = 6 (no	cuts),
r7 = 18 from	solution	7 = 1 + 6 or 7 = 2 + 2 + 3,
r8 = 22 from	solution	8 = 2 + 6,
r9 = 25 from	solution	9 = 3 + 6,
r10 = 30 from	solution	10 = 10 (no	cuts),

()ininin rpr -££
+=

1
max

i n – i

Length i 1 2 3 4 5 6 7 8 9 10
Price pi 1 5 8 9 10 17 17 20 24 30

7

Recursive top-down implementation
Input:	an	array	p[1	.	.	n]	and	an	integer	n

CUT-ROD(p,	n) //	p:	prices
1. if n	==	0
2. return 0
3. q =	-¥ //	Initialize	the	maximum	revenue	q to	-¥
4. for i =	1 to	n
5. q =	max(q,	p[i]	+	CUT-ROD(p,	n	- i))					//
6. return q

Each	time	you	increase	n by	1,	your	program’s	running	time	would	
approximately	double.

8

()ininin rpr -££
+=

1
max

Recursive top-down implementation
� Recursion	tree

� Recursive	calls	resulting	from	a	call	CUT-ROD(p,	r)	
for	n =	4

4

3 2

2 1 1 0

1 0 0

1 0

0

0

0

0

In	general,	this	recursion	tree	has	2n nodes	and	2n – 1 leaves.

9

Recursive top-down implementation
� Recursion	tree

� Lots	of	repeated	subproblems
� Solve	the	subproblem	for	size	2 twice,	for	size	1 four	
times,	and	for	size	0 eight	times

� Exponential	growth

� Solution	to	recurrence:	T(n) = 2n

10

ïî

ï
í
ì

³+

=
= å

-

=

1)(1

01
)(1

0
nifjT

nif
nT n

j

11

Dynamic-programming solution
� Instead	of	solving	the	same	subproblems	repeatedly,	
arrange	to	solve	each	subproblem	just	once.

� Save	the	solution	to	a	subproblem	in	a	table,	and	refer	
back	to	the	table	whenever	we	revisit	the	subproblem.

� “Store,	don’t	recompute”	Þ time-memory	trade-off
� Can	turn	an	exponential-time	solution	into	a	
polynomial-time	solution.

� Two	basic	approaches:	top-down	with	memoization1,	
and	bottom-up

12

1 This	is	not	a	misspelling.	Memoization comes	from	memo,	since	the	technique	consists	of	recording	a	
value	so	that	we	can	look	it	up	later

Using dynamic programming for
optimal rod cutting
� Top-down	approach	with	memoization

� To	find	the	solution	to	a	subproblem,	first	look	in	the	
table.

� If	the	answer	is	there,	use	it.
� Otherwise,	compute	the	solution	to	the	subproblem	and	
then	store	the	solution	in	the	table	for	future	use

� MemoizedÞ it	“remembers”	what	results	it	has	
computed	previously

13

Using dynamic programming for
optimal rod cutting
� Top-down	approach	with	memoization

MEMOIZED-CUT-ROD(p, n)
1. Let	r[0 . . n] be	a	new	array
2. for i = 0 to	n
3. r[i]= -¥ //	Initializes	a	new	array	r[0 . . n] with	-¥ (unknown)
4. returnMEMOIZED-CUT-ROD-AUX(p, n, r)

14

Using dynamic programming for
optimal rod cutting
� Top-down	approach	with	memoization

MEMOIZED-CUT-ROD-AUX(p, n, r)
1. if r[n] ³ 0 //	check	to	see	whether	the	desired	value	is	already	known
2. return	r[n] //	if	the	desired	value	is	known
3. if n == 0 //	compute	the	desired	value	q in	the	usual	manner	if	it	is	unknown
4. q = 0
5. else q = -¥ //	the	solution	is	unknown
6. for i = 1 to	n
7. q =	max(q, p[i] +	MEMOIZED-CUT-ROD-AUX(p, n-i, r))
8. r[n]		=	q //	Save	the	computed	value	q in	r[n]	
9. return q

15

The	procedure	MEMOIZED-CUT-ROD-AUX is	just	the	memoized version	of	
the	previous	procedure,	CUT-ROD.

Using dynamic programming for
optimal rod cutting
� Bottom-up	approach

BOTTOM-UP-CUT-ROD(p, n)
1. Let	r[0 . . n] be	a	new	array //	create	a	new	array	to	save	the	results
2. r[0] = 0 //	a	rod	of	length	0 earns	no	revenue
3. for j =	1 to	n
4. q = -¥
5. for i = 1 to	j //	i <	j
6. q =	max(q, p[i] + r[j - i])
7. r[j] = q //	Save	the	solution	to	the	subproblem	of	size j in	r[n]
8. return r[n]

Solve	each	subproblem	of	size	j,	for	j
= 1, 2,..., n,	in	order	of	increasing	size

Directly	references	array	entry	r[j – i] instead of
making a recursive call to solve the subproblem j – i

16

Using dynamic programming for
optimal rod cutting
� Running	time

� BOTTOM-UP-CUT-ROD

� Doubly-nested	loop	structure
� Number	of	iterations	of	inner	for loop	forms	an	arithmetic	
series

� MEMOIZED-CUT-ROD

� for loop	of	lines	6	– 7	iterates	n times
� Total	number	of	iterations	forms	an	arithmetic	series

17

Using dynamic programming for
optimal rod cutting
� Running	time

� BOTTOM-UP-CUT-ROD

� Doubly-nested	loop	structure
� Number	of	iterations	of	inner	for loop	forms	an	arithmetic	
series

ÞQ(n2)
� MEMOIZED-CUT-ROD

� for loop	of	lines	6	– 7	iterates	n times
� Total	number	of	iterations	forms	an	arithmetic	series
ÞQ(n2)

18

Subproblem graphs
� How	to	understand	the	subproblems	involved	and	how	
they	depend	on	each	other.

� Directed	graph:
� Vertex	labels:	sizes	of	the	
corresponding	subproblems

� Directed	edge	(x,	y):	need	a	solution
to	subproblem	y when	solving
subproblem	x

� Example:	For	the	rod-cutting	problem
with	n = 4

4

3

2

1

0

19

Reconstructing a solution
� So	far,	have	focused	on	computing	the	value of	an	
optimal	solution,	rather	than	the	choices that	
produced	an	optimal	solution

� Extend	the	bottom-up	approach	to	record	not	just	
optimal	values,	but	optimal	choices
� Save	the	optimal	choices	in	a	separate	table	(s[])
� Then	use	a	separate	procedure	to	print	the	optimal	
choices

20

Reconstructing a solution
� Extended	version	of	BOTTOM-UP-CUT-ROD

21

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
1. Let	r[0 . . n] and s[1 . . n] be	new	arrays //	sj:	optimal	size	of	the	first	piece	to	cut

2. r[0] = 0 //	a	rod	of	length	0 earns	no	revenue

3. for j =	1 to	n
4. q = -¥
5. for i = 1 to	j //	i <	j

6. if q <	p[i]	+	r[j – i]
7. q =	p[i] + r[j - i]
8. s[j] = i //	hold	the	optimal	size	i of	the	first	piece	to	cut	off

9. r[j] = q //	Save	the	solution	to	the	subproblem	of	size j in	r[n]

10. return r and s

Reconstructing a solution
� To	print	out	the	cuts	made	in	an	optimal	solution:

22

PRINT-CUT-ROD-SOLUTION(p, n)
1. (r,	s)	=	EXTENDED-BOTTOM-UP-CUT-ROD(p,	n)
2. while n >	0
3. print	s[n]
4. n =	n – s[n]

Reconstructing a solution
� Example:	EXTENDED-BOTTOM-UP-CUT-ROD(p,	10)	
returns

23

Length i 1 2 3 4 5 6 7 8 9 10
Price pi 1 5 8 9 10 17 17 20 24 30

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0
s[i]

r[0] = 0

Reconstructing a solution
� Example:	EXTENDED-BOTTOM-UP-CUT-ROD(p,	10)	
returns

24

Length i 1 2 3 4 5 6 7 8 9 10
Price pi 1 5 8 9 10 17 17 20 24 30

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0
s[i]

if q < p[i] + r[j – i] = p[1] + r[0] = 1 + 0 = 1 // j = 1, i = 1
q = p[1] + r[0] = 1
s[1] = 1 // s[j] = i

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1
s[i] 1

Reconstructing a solution
� Example:	EXTENDED-BOTTOM-UP-CUT-ROD(p,	10)	
returns

25

Length i 1 2 3 4 5 6 7 8 9 10
Price pi 1 5 8 9 10 17 17 20 24 30

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1
s[i] 1

if q < p[i] + r[j – i] = p[2] + r[0] = 5 + 0 = 5 // j = 2, i = 2
q = p[2] + r[0] = 5
s[2] = 2 // s[j] = i

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5
s[i] 1 2

Reconstructing a solution
� Example:	EXTENDED-BOTTOM-UP-CUT-ROD(p,	10)	
returns

26

Length i 1 2 3 4 5 6 7 8 9 10
Price pi 1 5 8 9 10 17 17 20 24 30

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5
s[i] 1 2

if q < p[i] + r[j – i] = p[3] + r[0] = 8 + 0 = 8 // j = 3, i = 3
q = p[3] + r[0] = 8
s[3] = 3 // s[j] = i

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8
s[i] 1 2 3

Reconstructing a solution
� Example:	EXTENDED-BOTTOM-UP-CUT-ROD(p,	10)	
returns

27

Length i 1 2 3 4 5 6 7 8 9 10
Price pi 1 5 8 9 10 17 17 20 24 30

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8
s[i] 1 2 3

if q < p[i] + r[j – i] = p[2] + r[2] = 5 + 5 = 10 // j = 4, i = 2
q = p[2] + r[2] = 10
s[4] = 2 // s[j] = i

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8 10
s[i] 1 2 3 2

Reconstructing a solution
� Example:	EXTENDED-BOTTOM-UP-CUT-ROD(p,	10)	
returns

28

Length i 1 2 3 4 5 6 7 8 9 10
Price pi 1 5 8 9 10 17 17 20 24 30

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8 10
s[i] 1 2 3 2

if q < p[i] + r[j – i] = p[2] + r[3] = 5 + 8 = 13 // j = 5, i = 2
q = p[2] + r[3] = 13
s[5] = 2 // s[j] = i

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8 10 13
s[i] 1 2 3 2 2

Reconstructing a solution
� Example:	EXTENDED-BOTTOM-UP-CUT-ROD(p,	10)	
returns

29

Length i 1 2 3 4 5 6 7 8 9 10
Price pi 1 5 8 9 10 17 17 20 24 30

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8 10 13
s[i] 1 2 3 2 2

if q < p[i] + r[j – i] = p[6] + r[0] = 17 + 0 = 17 // j = 6, i = 6
q = p[6] + r[0] = 17
s[6] = 6 // s[j] = i

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8 10 13 17
s[i] 1 2 3 2 2 6

Reconstructing a solution
� Example:	EXTENDED-BOTTOM-UP-CUT-ROD(p,	10)	
returns

30

Length i 1 2 3 4 5 6 7 8 9 10
Price pi 1 5 8 9 10 17 17 20 24 30

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8 10 13 17
s[i] 1 2 3 2 2 6

if q < p[i] + r[j – i] = p[1] + r[6] = 1 + 17 = 18 // j = 7, i = 1
q = p[1] + r[6] = 18
s[7] = 1 // s[j] = i

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8 10 13 17 18
s[i] 1 2 3 2 2 6 1

Reconstructing a solution
� Example:	EXTENDED-BOTTOM-UP-CUT-ROD(p,	10)	
returns

31

Length i 1 2 3 4 5 6 7 8 9 10
Price pi 1 5 8 9 10 17 17 20 24 30

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8 10 13 17 18
s[i] 1 2 3 2 2 6 1

if q < p[i] + r[j – i] = p[2] + r[6] = 5 + 17 = 22 // j = 8, i = 2
q = p[2] + r[6] = 22
s[8] = 2 // s[j] = i

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8 10 13 17 18 22
s[i] 1 2 3 2 2 6 1 2

Reconstructing a solution
� Example:	EXTENDED-BOTTOM-UP-CUT-ROD(p,	10)	
returns

32

Length i 1 2 3 4 5 6 7 8 9 10
Price pi 1 5 8 9 10 17 17 20 24 30

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8 10 13 17 18 22
s[i] 1 2 3 2 2 6 1 2

if q < p[i] + r[j – i] = p[3] + r[6] = 8 + 17 = 25 // j = 9, i = 3
q = p[6] + r[3] = 25
s[9] = 3 // s[j] = i

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8 10 13 17 18 22 25
s[i] 1 2 3 2 2 6 1 2 3

Reconstructing a solution
� Example:	EXTENDED-BOTTOM-UP-CUT-ROD(p,	10)	
returns

33

Length i 1 2 3 4 5 6 7 8 9 10
Price pi 1 5 8 9 10 17 17 20 24 30

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8 10 13 17 18 22 25
s[i] 1 2 3 2 2 6 1 2 3

if q < p[i] + r[j – i] = p[10] + r[0] = 30 + 0 = 30 // j = 10, i = 10
q = p[10] + r[0] = 30
s[10] = 10 // s[j] = i

Length i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8 10 13 17 18 22 25 30
s[i] 1 2 3 2 2 6 1 2 3 10

