
Approximation Algorithms
CPSC 6109 - Algorithms Analysis and Design

Dr. Hyrum D. Carroll

April 17, 2024

NP-Complete problems

Source: wikimedia.org user Actam

https://www.google.com/search?q=list+of+np-complete+problems
https://commons.wikimedia.org/wiki/User:Actam

NP-Complete Problem Approximations

I Which NP-Complete problem is not important to have an
efficient algorithm?

I 3 options to deal with an exponential run time:

1. Just run the exponential algorithm (hopefully with small
inputs)

2. Develop a polynomial time algorithm for only certain inputs
3. If instead of an optimal solution, a near-optimal solution will

suffice, then use an approximation algorithm

NP-Complete Problem Approximations

I Which NP-Complete problem is not important to have an
efficient algorithm?

I 3 options to deal with an exponential run time:

1. Just run the exponential algorithm (hopefully with small
inputs)

2. Develop a polynomial time algorithm for only certain inputs
3. If instead of an optimal solution, a near-optimal solution will

suffice, then use an approximation algorithm

Approximation Ratio ρ(n)

I Quantifies difference between optimal and approximation

I Assumption: Each solution has a positive cost

I C ∗: Optimal Solution Cost

I C : Approximation Solution Cost

I Minimization (0 < C ∗ ≤ C)

C

C ∗
≤ ρ(n) (1)

Approximation Ratio ρ(n)

I Quantifies difference between optimal and approximation

I Assumption: Each solution has a positive cost

I C ∗: Optimal Solution Cost

I C : Approximation Solution Cost

I Minimization (0 < C ∗ ≤ C)

C

C ∗
≤ ρ(n) (1)

I Maximization (0 < C ≤ C ∗)

C ∗

C
≤ ρ(n) (2)

Approximation Ratio ρ(n)

I Quantifies difference between optimal and approximation

I Assumption: Each solution has a positive cost

I C ∗: Optimal Solution Cost

I C : Approximation Solution Cost

I Minimization (0 < C ∗ ≤ C) & Maximization (0 < C ≤ C ∗)

max

(
C

C ∗
,
C ∗

C

)
≤ ρ(n) (1)

Approximation Ratio ρ(n)

I Quantifies difference between optimal and approximation

I Assumption: Each solution has a positive cost

I C ∗: Optimal Solution Cost

I C : Approximation Solution Cost

I Minimization (0 < C ∗ ≤ C) & Maximization (0 < C ≤ C ∗)

max

(
C

C ∗
,
C ∗

C

)
≤ ρ(n) (1)

I ρ(n) ≥ 1

Approximation Ratio ρ(n)

I Quantifies difference between optimal and approximation

I Assumption: Each solution has a positive cost

I C ∗: Optimal Solution Cost

I C : Approximation Solution Cost

I Minimization (0 < C ∗ ≤ C) & Maximization (0 < C ≤ C ∗)

max

(
C

C ∗
,
C ∗

C

)
≤ ρ(n) (1)

I ρ(n) ≥ 1

I ρ(n)-approximation algorithm

Approximation Schemes

I Given inputs of size n and a fixed ε

I (1 + ε)-approximation algorithm

I Generally, the run time increase significantly as ε decreases

I A polynomial-time approximation scheme runs in time
polynomial to n for any fixed ε > 0

I A fully polynomial-time approximation scheme runs in time
polynomial to n for any fixed 1/ε > 0

Example Approximations Presentations

35.1 The vertex-cover problem
35.2 The traveling-salesman problem
35.3 The set-covering problem

Vertex Cover

I The Vertex Cover problem is determining a set of vertices such
that every edge is adjacent to one of the vertices in the set

I Formally, given an undirected graph G = (V ,E), the vertex
cover is the subset V ′ ⊆ V , such that for every edge (u, v) in
G , u ∈ V ′ and/or v ∈ V ′

I Optimal vertex-cover problem min |C ∗|
I Approximate vertex cover solution: |C | ≤ 2|C ∗|, ρ(n) = 2

Vertex Cover

I The Vertex Cover problem is determining a set of vertices such
that every edge is adjacent to one of the vertices in the set

I Formally, given an undirected graph G = (V ,E), the vertex
cover is the subset V ′ ⊆ V , such that for every edge (u, v) in
G , u ∈ V ′ and/or v ∈ V ′

I Optimal vertex-cover problem min |C ∗|
I Approximate vertex cover solution: |C | ≤ 2|C ∗|, ρ(n) = 2

Approximate Vertex Cover Solution

Set vertexCoverApprox(Graph G){

Set vertexCover; // vertices in vertex cover

Edges edgesCopy = G.Edges(); // copy all of the edges

Edge edge;

Vertex u;

Vertex v;

while(edgesCopy.isEmpty() == false){

edge = getEdge(edgesCopy); // get any edge

for(Vertex vertex : edge.getVertices()){

vertexCover.add(vertex); // add to vertex cover

for(Edge edge : vertex.getAdjacentEdges()){

// remove edges already covered by vertex

edgesCopy.remove(edge);

}

}

}

return vertexCover;

}

Approximate Vertex Cover Solution

I Using an adjacency list for E ′, runs in O(V + E)

Approximate Vertex Cover Solution

Figure 35.1 from Introduction to Algorithms 4th Edition

Approximation Algorithms Exercise

I Extra credit for presenting about either:
I Approximate Traveling-salesman Solution
I Approximate Set-covering Solution

I Presentation needs to include:
I Describe the problem (informally and formally)
I Detail the approximate solution
I Provide the run-time of the approximate solution
I Provide ρ(n)

Approximate Traveling-salesman Solution

Figure 35.2 from Introduction to Algorithms 4th Edition

Approximate Set-covering Solution

Figure 35.3 from Introduction to Algorithms 4th Edition

