
Prepared	by	Dr.	Lee

Repetitive Algorithms
� Two	approaches	to	writing	repetitive	algorithms

� Iteration
� Recursion

� Recursion is	a	repetitive	process	in	which	an	algorithm	
calls	itself
� Usually	recursion	is	utilized	in	such	a	way	that	a	
subroutine	calls	itself	or	a	function	calls	itself

2

Iteration vs Recursion
� Iteration	vs	Recursion

� Iterative	algorithms	may	be	reduced	to	the	recursive	
algorithms

� This	means	that	often	the	analysis	of	repetitive	
algorithms	can	be	reduced	to	the	analysis	of	recursive	
algorithms

3

Factorial – a case study
� The	factorial of	a	positive	number	is	the	product	of	the	
integral	values	from	1 to	the	number:

Õ
=

=××××=
n

i

inn
1

321 !!

4

Iterative Factorial Algorithm
� Iterative	Factorial	Algorithm	Definition

� A	repetitive	algorithm	is	defined	iteratively whenever	
the	definition	involves	only	the	algorithm	parameter	
(parameters)	and	not	the	algorithm	itself.

ú
û

ù
ê
ë

é
>´´´´-´-´
=

=
0123)2()1(
01

)(
nifnnn
nif

nFactorial
!

5

Recursive Factorial Algorithm
� Recursive	Factorial	Algorithm	Definition

� A	repetitive	algorithm	uses	recursion whenever	the	
algorithm	appears	within	the	definition	itself.

() ú
û

ù
ê
ë

é
>-´
=

=
01

01

nifnFactorialn
nif

nFactorial
)(

)(

6

Recursion: basic point
� The	recursive	solution	for	a	problem	involves	a	two-
way	journey:
� First	we	decompose a	problem	from	the	top	to	the	
bottom

� Then	we	solve the	problem	from	the	bottom	to	the	top.

7

Factorial (3):
Decomposition and solution
� Factorial(3)	Recursively	

Factorial(3) = 3 * Factorial(2)

Factorial(2) = 2 * Factorial(1)

Factorial(1) = 1 * Factorial(0)

Factorial(0) =1

Factorial(3) = 3 * 2 = 6

Factorial(2) = 2 * 1 = 2

Factorial(1) = 1 * 1 = 1

8

Iterative Factorial Algorithm
ITERFACTORIAL(N)
1. Nfact ß 1
2. for i ß 1 to N do
3. Nfact ß Nfact ´ i
4. Return (Nfact)

Computational	complexity?

9

Recursive Factorial Algorithm
RECURSIVEFACTORIAL(N)
1. If (N=0)
2. then
3. Nfact ß 1
4. else
5. Nfact ß N ´ RECURSIVEFACTORIAL (N-1)
6. Return (Nfact)

Computational	complexity?

10

Designing recursive algorithms
� Each	step	(or	each	call)	of	a	recursive	algorithm	solves	
one	part of	the	problem	and	reduces	the	size of	the	
problem.

� The	general	part	of	the	solution	is	the	recursive	call.	At	
each	recursive	call,	the	size	of	the	problem	is	reduced.

� Every	recursive	algorithm	must	have	a	base	case	that	
“solves”	the	problem.

� The	rest	of	the	algorithm	is	known	as	the	general	
case.	The	general	case	contains	the	logic	needed	to	
reduce	the	size	of	the	problem.

11

Designing recursive algorithms
� Once	the	base	case	has	been	reached,	the	
decomposition	is	complete	and	the	solution	begins.	

� We	now	know	one	part	of	the	answer	and	can	return	
that	part	to	the	next,	more	general	statement.

� This	allows	us	to	solve	the	next	general	case.
� As	we	solve	each	general	case	in	turn,	we	are	able	to	
solve	the	next-higher	general	case	until	we	finally	
solve	the	most	general	case,	which	solves	the	original	
problem.

12

Designing recursive algorithms
� The	rules	for	designing	a	recursive	algorithm:

1. First,	determine	the	base	case.
2. Then	determine	the	general	case.
3. Combine the	base	case	and	the	general	cases	into	an	

algorithm

13

Designing recursive algorithms
� Each	recursive	call	must	reduce	the	size	of	the	problem
and	move	it	toward	the	base	case.	

� The	base	case,	when	reached,	must	terminate	without	
a	call	to	the	recursive	algorithm;	that	is,	it	must	
execute	a	return.

14

Prepared	by	Dr.	Lee

Divide-and-Conquer Approach
� Many	useful	algorithms	are	recursive	in	structure.
� To	solve	a	given	problem,	they	call	themselves	
recursively	to	deal	with	closely	related	subproblems.

� Divide-and-Conquer (DaC)	approach	means	that	an	
algorithm	breaks	the	problem	into	several	
subproblems	that	are	similar	to	the	original	problem	
but	smaller	in	size.

� Then	these	smaller	subproblems	should	be	solved.
� Then	their	solutions	are	combined	into	the	original	
problem	solution.

16

Divide-and-Conquer Approach
� DaC paradigm	involves	three	steps	at	each	level	of	the	
recursion:
� Divide the	problem	into	a	number	of	subproblems.
� Conquer the	subproblems	by	solving	them.	
� Combine the	solutions	to	the	subproblems	into	the	
solution	for	the	original	problem.

17

Divide-and-Conquer Approach
� Efficiency

� The	efficiency	function	of	an	algorithm	designed	using	
the	DaC approach	is	a	sum	of	the	subproblems	efficiency	
functions	and	the	“combine-merger”	efficiency	function.

18

Example – Problem 1
� Assume	that	we	are	reading	data	from	the	keyboard	
until	the	“end	of	input”	sign	is	entered	and	need	to	
print	the	data	in	reverse.

� The	easiest	formal	way	to	print	the	list	in	reverse	is	to	
write	a	recursive	algorithm	using	the	divide-and-
conquer approach.

19

Solution
� It	should	be	obvious	that	to	print	the	list	in	reverse,	we	
must	first	read	all	of	the	data.	If	we	print	before	we	
read	all	of	the	data,	we	print	the	list	in	sequence.	If	we	
print	after	we	read	the	last	piece	of	data	– that	is,	if	we	
print	it	as	we	back	out	of	the	recursion	– we	print	it	in	
reverse	sequence.

� The	base	case,	therefore,	is	that	we	have	read	the	last	
piece	of	data.

� Similarly,	the	general	case	is	to	read	the	next	piece	of	
data.

20

Implementation
PRINTREVERSE(data)
1. If (end of input)
2. then
3. Return // This is the base case
4. Read(data)
5. PRINTREVERSE(data)
6. // This statement will be executed only after the last symbol will be read
7. PRINT(data)
8. Return

21

Print Keyboard Input in Reverse
� Recursive	calls	(reads)

� Recursive	returns	(prints)

6

data

20

data

14

data

22

…
PRINTREVERSE(data)
…

If	(end	of	input)
return

Read	data
PRINTREVERSE(data)
Print	data
Return

If	(end	of	input)
return

Read	data
PRINTREVERSE(data)
Print data
Return

If	(end	of	input)
return

Read	data
PRINTREVERSE(data)
Print data
Return

If	(end	of	input)
return

Read	data
…
Return

Print	14

Print	20

Print	6

23

Analysis
� The	first	subproblem is	reading	data	from	the	
keyboard

� The	second	subproblem is	printing	the	list
� The	running	time	for	both	subproblems	is	n.
� Hence	the	running	time	for	the	entire	problem	is	
n +	n =	2n ,	its	efficiency	is	Θ(n)

24

Example – Problem 2
� Determine	the	greatest	common	divisor	(GCD)	for	two	
numbers.

� Euclidean	algorithm:	GCD(a,	b)	can	be	recursively	
found	from	the	formula

� a mod	b is	determined	as	follows:
a mod	b =	remainder	of	a /	b

ï
î

ï
í

ì
=
=

=
otherwisebabGCD

aifb
bifa

baGCD
)mod,(

),(0

0

25

Implementation
GCD(a, b)
1. if (b = 0)
2. then
3. result ß a // This is the base case 1
4. else
5. if (a = 0)
6. then
7. result ß b // This is the base case 2
8. else
9. GCD(b, a mod b) // This is the general case
10. return

26

Implementation - Example
Find GCD(60, 36) 12

a = 60; b = 36

GCD(36, 60 mod 36) = GCD(36, 24) à general case

GCD(24, 36 mod 24) = GCD(24, 12) à general case

GCD(12, 24 mod 12) = GCD(12, 0) à base case

GCD(12, 0) = 12

27

Analysis
� The	efficiency	of	the	algorithm	is	logarithmic:	
the	number	of	steps	is	about	~lg b for	b<a

� Once	the	base	case	is	reached	(either	a or	b is	0),	the	
problem	is	solved

� The	general	case	is	determined	by	GCD(b,	a mod	b)

28

Example – Problem 3
� Generation	of	the	Fibonacci	numbers	series.
� Each	next	number	is	equal	to	the	sum	of	the	previous	
two	numbers.

� A	classical	Fibonacci	series	is	0,	1,	1,	2,	3,	5,	8,	13,	…
� The	series	of	n numbers	can	be	generated	using	a	
recursive	formula

ï
î

ï
í

ì

-+-
=
=

=
otherwisenFibonaccinFibonacci

nif
nif

nFibonacci
)2()1(

11
00

)(

29

Implementation
FIBONACCI(n)
1. if (n = 0)
2. then
3. result ß 0 // This is the base case 1
4. else
5. if (n = 1)
6. then
7. result ß 1 // This is the base case 2
8. else
9. result = FIBONACCI(n – 1) + FIBONACCI(n – 2)
10. Return

30

Implementation – Example
Find	Fibonaci(5)													5

Fibonacci(5)=Fibonacci(4)+Fibonacci(3)																																				5

Fibonacci(4)=Fibonacci(3)+Fibonacci(2)	à general	case													3

Fibonacci(3)=Fibonacci(2)+Fibonacci(1)	à general	case													2

Fibonacci(2)=Fibonacci(1)+Fibonacci(0)	à general	case													1

Fibonacci(1)=1;	Fibonacci(0)=0 à base	case

31

Recursion Tree
� To	represent	a	Divide-and-Conquer	approach,	a	
recursion	tree	should	be	used.

� A	root of	the	recursion	tree	represents	the	most	
general	case	(solution).

� The	lowest	level	leaves	of	the	recursion	tree	represent	
the	base	case.

� Other	nodes	represent	general	cases.

32

Analysis
� Recursion	Tree	Shows	the	Divide-and-Conquer	
Structure: Fib(5)

Fib(4)

Fib(3) Fib(2)

Fib(3)

Fib(2) Fib(1)

Fib(2) Fib(1) Fib(1) Fib(0) Fib(1) Fib(0)

Fib(1) Fib(0)

1

1 0

1 01 01

15 recursive	calls	of	Fib(n)
33

Analysis
� The	efficiency	of	the	Fibonacci	recursive	algorithm	is	
exponential	!!!

Fib(n) Calls Fib(n) Calls

1 1 11 287

2 3 12 465

3 5 13 753

4 9 14 1219

5 15 15 1973

6 25 20 21,891

7 41 25 242,785

8 67 30 2,692,573

9 109 35 29,860,703

10 177 40 331,160,281

34

Prepared	by	Dr.	Lee

Analysis of Recurrences
� How	we	can	evaluate	the	running	time/efficiency	of	
the	recursive	algorithms?

36

Recurrence
� When	an	algorithm	contains	a	recursive	call	to	itself	or	
if	it	is	represented	using	a	Divide-and-Conquer	
approach,	its	running	time	can	often	be	described	by	a	
recurrence	equation	or	recurrence

� It	describes	the	overall	running	time	on	a	problem	of	
size	n in	terms	of	running	time	on	smaller	inputs

37

Solving Recurrences
� Solving	recurrences means	the	asymptotic	evaluation	
of	their	efficiency

� The	recurrence	can	be	solved using	some	
mathematical	tools	and	then	bounds	(big-O,	big-Ω,	
and	big-Θ)	on	the	performance	of	the	algorithm	
should	be	found	according	to	the	corresponding	
criteria

38

Composing Recurrences
� A	recurrence	for	the	running	time	of	a	divide-and-
conquer algorithm	is	based	on	the	three	steps:
1) Let	T(n) be	the	running	time	of	a	problem	of	size	n.	If	the	

problem	size	is	small	enough	(n	≤	c)	for	some	constant	c,	the	
straightforward	solution	takes	constant	time,	i.e.	Θ(1)

2) Suppose	that	our	division	of	the	problem	yields	k subproblems,	
each	of	which	is	1/m size	of	the	original.

3) If	we	take	D(n) time	to	divide	the	problem	into	subproblems	and	
C(n) time	to	combine	the	solutions	to	the	subproblems	to	the	
original	problem,	we	got	the	recurrence

()î
í
ì

++
£Q

=
otherwisenCnDmnkT

cnif
nT

)()(/
)(

)(
1

39

Solving Recurrences
� Hence, solving	recurrences means	finding	the	
asymtotic	bounds	(big-O,	big-Ω, and	big-Θ)	for	the	
function	T(n)

40

Solving Recurrences
� Substitution	method	– we	guess	a	bound	and	then	
use	mathematical	induction to	prove	our	guess

� Recursion-tree	method	converts	recursion	into	a	
tree	whose	nodes	represent	the	“subproblems”	and	
their	costs.	It	is	used	to	estimate	a	good	guess

� Master	Theorem	method	provides	bounds	for	
recurrences	of	the	form

() 11 >³+= banfbnaTnT ,);(/)(

f(n) is	a	given	function

41

Solving Recurrences
� Master	Theorem	method

� Provides	the	immediate	solution	for	recurrences	of	the	
form

� f(n)	is	a	given	function,	which	satisfies	some	pre-
determined	conditions

42

() 11 >³+= banfbnaTnT ,);(/)(

Solving Recurrences
� Recursion-tree	method

� Converts	recursion	into	a	tree	whose	nodes	represent	
the	“subproblems”	and	their	costs

� Then	the	sum	of	these	costs	can	be	used	as	a	“good	
guess” for	the		substitution	method	or	the	master	
theorem	method

43

Solving Recurrences
� Substitution	method

� Known	as	a	“good	guess	method”
� The	first	step	is:	to	guess	a	solution	(a	bound)
� The	second	step	is:	to	prove	the	correctness	of	the	guess	
substituting	the	guess	into	the	recurrence	and	using	
induction.

44

Substitution Method:
Example

� Guess	for	the	exact	solution:	g(n) = nlgn + n

ï
ï

î

ï
ï

í

ì

>+÷
ø
ö

ç
è
æ

=
=

1
2

2

11
)(

nifnnT

nif
nT

45

Substitution Method
(the exact solution)
� Induction: Guess:	T(n) = n lgn + n
� Basis:	n = 1 Þ T(n) = 1;	T(n) = nlgn + n = 1×lg1 + 1 = 1

® n0 = 1
� Inductive	step:	Inductive	Hypothesis is

T(k) = k lg k + k, "k ³ n0
� Let	us	use	this	hypothesis:

�
46

nnnnnnnnnnnn

nnnnnnnnnnTnT

)T(n/onsubstituti

+=++-=++-=

=++=+
÷÷
÷
÷

ø

ö

çç
ç
ç

è

æ

+=+÷
ø
ö

ç
è
æ=

lglg)2lg(lg

2
lg

22
lg
2

2
2

2)(

2
!"!#$

Substitution Method

� Generally,	we	use	asymptotic	notation
� We	would	write	T(n) = 2T(n/2) + Q(n)
� We assume T(n) = O(1) for sufficiently small n
� We express the solution by asymptotic notation:

T(n) = Q(n lgn)
� For the substitution method

� Name the constant in the additive term
� Show the upper(O) and lower (W) bounds separately.

Might need to use different constants for each.

47

Substitution Method
(with asymptotic notation)
� T(n) = 2T(n/2) + Q(n)
� If	we	want	to	show	an	upper	bound	of	T(n) = 2T(n/2) +

O(n),	we	write	T(n) £ 2T(n/2) + cn for	some	positive	
constant	c

48

Substitution Method
(with asymptotic notation)
� Upper	bound:

� Guess:	T(n) £ dn lg n for	some	positive	constant	d.

� Substitution:

if	–dn + cn £ 0, d ³ c
Therefore,	T(n) = O(n lg n)

49

ndncndnndn

cnndncnnndcnnTnT

lglg
2

lg
2

lg
2

2)2/(2)(

£+-=

=+=+÷
ø
ö

ç
è
æ=+£

ï
ï

î

ï
ï

í

ì

>+÷
ø
ö

ç
è
æ

=
=

1
2

2

11
)(

nifnnT

nif
nT

What about n0?
T(1) = 1 £ d1 lg1 = 0 (no)
T(2) = 4 £ d2 lg 2 = 2d (yes)

Þ d ³ 2, n0 = 2

Substitution Method
(with asymptotic notation)
� Lower	bound:	write	T(n) ³ 2T(n/2) + cn for	some	positive	
constant	c
� Guess:	T(n) ³ dn lg n for	some	positive	constant	d.
� Substitution:

if	–dn + cn ³ 0, d £ c
Therefore,	T(n) = W(n lg n)

� Therefore,	T(n) = Q(n lg n) �

50

ndncndnndn

cnndncnnndcnnTnT

lglg
2

lg
2

lg
2

2)2/(2)(

³+-=

=+=+÷
ø
ö

ç
è
æ=+³

ï
ï

î

ï
ï

í

ì

>+÷
ø
ö

ç
è
æ

=
=

1
2

2

11
)(

nifnnT

nif
nT

What about n0?
T(1) = 1 ³ d1 lg1 = 0 (yes)
T(2) = 4 ³ d2 lg 2 = 2d (yes)

Þ d £ 2, n0 = 2

Solving Recurrences
� The	substitution	method

� Examples:
� T(n) = 2T(n/2) + O(n) ® T(n) = O(nlgn)
� T(n) = 2T(ën/2û) + n ® ???

51

Solving Recurrences
� The	substitution	method

� Examples:
� T(n) = 2T(n/2) + O(n) ® T(n) = O(nlgn)
� T(n) = 2T(ën/2û) + n ® T(n) = O(nlgn)
� T(n) = 2T(ën/2û + 17) + n® ???

52

Solving Recurrences
� The	substitution	method

� Examples:
� T(n) = 2T(n/2) + O(n) ® T(n) = O(nlgn)
� T(n) = 2T(ën/2û) + n ® T(n) = O(nlgn)
� T(n) = 2T(ën/2û + 17) + n® T(n) = O(nlgn)

53

Recursion Tree
� A	recursion	tree	is	used	to	present	a	problem	as	a	
composition	of	subproblems.	It	is	very	suitable	to	
present	any	divide-and-conquer	algorithm	

� Each	node	represents	the	cost	of	a	single	subproblem
� Usually	each	level	of	the	tree	corresponds	to	one	step	
of	the	recursion

54

Recursion Tree
� We	sum	the	costs	within	each	level	of	the	tree	to	
obtain	a	set	of	per-level	costs

� Then	we	sum	all	the	per-level	costs	to	determine	the	
total	cost	of	all	levels	of	the	recursion

� As	a	result,	we	generate	a	guess	that	can	be	then	
proven	by	the	substitution	method

55

Recursion Tree: Determination of a
“Good” Asymptotic Bound
� Draw	the	tree	based	on	the	recurrence	
� From	the	tree	determine:	

� #	of	levels	in	the	tree	
� cost	per	level	
� #	of	nodes	in	the	last	level	
� cost	of	the	last	level	(which	is	based	on	the	number	of	nodes	in	the	

last	level)	
� Write	down	the	summation	using	∑	notation	– this	summation	

sums	up	the	cost	of	all	the	levels	in	the	recursion	tree	
� Simplify	the	summation	expression	coming	up	with	your	“guess”	

in	terms	of	Big-O,	or	Big-Ω	depending	on	which	type	of	
asymptotic	bound	is	being	sought).	

� Then	use	Substitution	Method	to	prove	that	the	“guess”	is	
correct.

56

Recursion Tree:
Example – Merge Sort
� Total	number	of	elements	per	level	is	always	n

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c c c c c c

lg
n

Each	level	cost	sums	to	cn

cn

cn

cn

cn

2lgn = n Total:	cn lgn +	cn

57

Recursion Tree:
Example – Merge Sort
� Close	form	solution	as	“guess”

T(n) = cn lgn + cn = cn lgn + O(n) = O(cn lgn) + O(n) = O(n lgn)

� Substitution	method
� Assume	n is	a	power	of	2 to	avoid	floor	and	cell	complica.	

� Inductive	Hypothesis	(IH):
� Assume:	T(k/2) £ d k/2 lg k/2
� Show: T(k) = 2 T(k/2) + ck £ d k lg k

î
í
ì

>+
=

=
122

1

nifcnnT
nifc

nT
)/(

)(

58

Recursion Tree:
Example – Merge Sort

� T(k) = 2T(k/2) + ck Recurrence
£ 2(dk/2 lg k/2) + ck Substitute	IH
= dk lg k/2 + ck
= dk lg k – dk + ck £ dk lg k

� Find	d that	satisfies	the	last	line
dk lg k – dk + ck £ dk lg k

– dk + ck £ 0
ck £ dk
c £ d

Satisfied by d ³ c

59

Recursion Tree:
Example – Merge Sort

� Basis:	
T(1) = 2T(1/2) + c×1 = c £ d ×1 lg1 = 0
since	need	n ³ n0 for	n a	power	of	2,	choose	n0 = 2

� Use	as	basis:
T(2) = d2 lg 2 = 2d

� By	the	recurrence,	where	c is	the	constant	divide	and	
combine	time:
T(2) = 2T(2/2) + 2c

= T(1) + T(1) + 2c
= c + c + 2c = 4c

60

Recursion Tree:
Example – Merge Sort

Need	T(2) = 4c £ d2 lg 2 = 2d
4c £ 2d

so	let d = 2c

Satisfied	d = 2c ³ c

� O(n lg n): 0 £ T(n) £ dn lg n for	d > 0,	for	"n ³ n0
satisfied	by	d ³ 2c > 0,	for	"n ³ n0 = 2

61

62

Substitution Method
(with asymptotic notation)
� Induction: Guess:	T(n) = O(n lgn)
� Basis:	n = 1 ® T(1) = 1 > c×g(1) = c×1×lg1 = 0

n = 2 ® T(2) = 2×T(1) + 2 = 4 £ c×g(2)= c(2×lg2)= 2c ® 2£c
� Inductive	Hypothesis:

T(n) = O(nlgn), "n ³ n0 $c > 0, n0 = 2: T(n) £ cnlgn

� Inductive	step

()2 2 lg lg lg lg 2
2 2 2 2

lg lg 2 lg l

()

g (1 g) l

n n n nT n c n cn n cn n n

cn n cn n cn n cn n cn n

T n

c cn nn

æ ö æ ö= + £ + = + = - + =ç ÷ ç ÷
è ø è ø

= - + = - + = - - £

(1) 0; 0, 0 1 0 1n c n c c c- ³ > > Þ - ³ Þ ³
63

Substitution Method
(with asymptotic notation)
� Analysis: Guess:	T(n) = O(n lgn)
� We	have	to	find	such	c ≥ 1 and	n0 that	

"n ³ n0 : T(n) £ cnlgn

n0 = 1; T(1) = 1; g(n) = 1×lg1 = 0;
cg(n) = c×1×lg1 = c×0 = 0; T(1) = 1 > 0 ® n0 > 1

n0 = 2; T(2) = 2×T(1) + 2 = 2×1 + 2 = 4; g(2) = 2×lg2;
c×2×lg2 = 2c; 4 £ 2c "c ³ 2 ® n0 = 2; c ³ 2

64

