
Prepared	by	Hyrum	D.	Carroll
(based	on	slides	from	Suk	Jin Lee)

Basic principles
� Analyzing	an	algorithm	means	ability	to	predict	
resources	that	the	algorithm	requires.

� Computational	(running) time is	the	most	important	
factor	that	we	want	to	measure.

� To	evaluate	resource	requirements	and	to	predict	
running	time,	we	need	a	universal	and	independent	
computational	model:	computational	time	is	a	
universal	measure	and	it	should	not	depend	on	a	
particular	computer.

2

Random-access machine model
� Random-access	machine (RAM) is	a	virtual	computer	
with	the	following	properties:
� Instructions	are	executed	one	after	another,	with	no	
concurrent	operations.

� The	instruction’s	set	coincides	with	the	commonly	
found	one	in	real	computers:
� Arithmetic:	add/sub,	mul/div,	remainder,	shift	left/right.
� Control:	conditional/unconditional	branching,	subroutine	
call	and	return.

� Data	movement:	load,	store,	copy.
� Each	instruction	takes	a	constant	amount	of	time.

3

Random-access machine model
� Random-access	machine (RAM) is	a	virtual	computer	
with	the	following	properties:
� The	RAM	model	uses	integer	and	floating-point	types	of	
numeric	data.

� We	don’t	worry	about	precision.
� Assume	a	limit	of	the	word	size:	when	working	with	
inputs	of	size	n,	assume	that	integers	are	represented	by	
c lg n bits	for	some	constant	c ≥ 1 (lg n is	a	commonly	
used	shorthand	for	log2 n).

4

Analyzing an algorithm’s running
time
� The	time	taken	by	an	algorithm	depends	on	the	input:

� Sorting	1000 numbers	takes	longer	than	sorting	3
numbers.

� A	given	sorting	algorithm	may	even	take	different	
amounts	of	time	on	two	inputs	of	the	same	size:	it	takes	
less	time	to	sort	n elements	when	they	are	already	sorted	
than	when	they	are	sorted	in	reverse	order.
e.g. A = [1, 2, 3, 4, 5, 6] vs	B = [6, 5, 4, 3, 2, 1]

5

Analyzing an algorithm’s running
time
� Input	size	depends	on	the	problem	being	considered:

� Usually,	the	number	of	items	in	the	input.	Like	the	size
n of	the	array	being	sorted.

� Could	be	something	else:	if	multiplying	two	integers,	
could	be	the	total	number	of	bits	in	the	two	integers.

� Could	be	described	by	more	than	one	number.	For	
example,	graph	algorithm	running	times	are	usually	
expressed	in	terms	of	the	number	of	vertices	and	the	
number	of	edges	in	the	input	graph.

6

Analyzing an algorithm’s running
time
� Finally,	the	running	time is	the	number	of	primitive	
operations	(steps	or	pseudocode	lines)	executed	on	a	
particular	input.

7

Analyzing an algorithm’s running
time: Fundamentals
� Steps	of	an	algorithm	to	be	machine-independent.
� Each	line	of	pseudocode	requires	a	constant	amount	of	
time.

� One	line	may	take	a	different	amount	of	time	than	
another,	but	each	execution	of	line	i takes	the	same	
amount	of	time	ci.

iß i - 1 // ci
A[i + 1] ß key // ci+1

8

Analyzing an algorithm’s running
time: Fundamentals
� The	line	consists	only	of	primitive	operations.

� If	the	line	is	a	function	(subroutine)	call,	then	the	actual	
call	takes	constant	time,	but	the	execution	of	the	
function	being	called	might	not.

� If	the	line	specifies	operations	other	than	primitive	ones,	
then	it	might	take	more	than	constant	time.	Examples:	
“sort	the	points	by	x-coordinate”,	“sort	an	array”,	etc.	

9

Insertion Sort 1st-a algorithm
for jß 2 to length[A]

do { keyß A[j]

// Insert A[j] into the sorted sequence A[1…j-1]

iß j - 1

while (i > 0) and (A[i] > key)

do { A[i+1] ß A[i]

iß i - 1

A[i + 1] ß key

}

}
11

Analysis of Insertion sort
� Assume	that	the	ith line	takes	time	ci,	which	is	a	
constant.

� For	j = 2, 3,…, n,	where	n =	length[A],		let	tj denote	the	
number	of	times	that	the	while loop	test	is	executed	
for	that	value	of	j.

� Note	that	when	a	for or	while loop	exits	in	the	usual	
way	– due	to	the	test	in	the	loop	header	– the	test	is	
executed	one	time	more	than	the	loop	body.

� Assume	that	comments	are	not	executable	statements.

12

The running time
� The	running	time	=	Sj (cost	of	the	jth statement)	×

× (number	of	times	statement	is	executed)=
=	Σ	cj sj

13

Insertion Sort 1st algorithm:
the Running time

Statement Running Time

InsertionSort(A, n)

for jß 2 to n c1n
do { keyß A[j] c2(n - 1)

// Insert A[j] into the sorted sequence A[1…j-1] 0
iß j - 1 c4(n - 1)
while (i > 0) and (A[i] > key) c5 T

do { A[i+1] ß A[i] c6 (T(n - 1))
iß i - 1 c7 (T(n - 1))
A[i + 1] ß key c8 (T(n - 1))

}
}

T = t2 + t3 + …+ tn, where tj is the number of while expression evaluations for the
jth for loop iteration

14

Insertion Sort 1st algorithm:
the Running time

What can T(n) be?
Best case: inner loop body never executed (the array is already sorted)

tj= 1 è T(n) is a linear function
Worst case: inner loop body executed for all previous elements

tj= jè T(n) is a quadratic function
Average case

???
15

𝑻 𝒏 = 𝑐!𝑛 + 𝑐" 𝑛 − 1 + 𝑐# 𝑛 − 1 + 𝑐$)
%&"

'

𝑡% +

+𝑐()
%&"

'

(𝑡% − 1) + 𝑐))
%&"

'

(𝑡% − 1) + 𝑐*)
%&"

'

(𝑡% − 1)

Insertion Sort 1st algorithm:
the Running time - Best case
� Best case: inner loop body never executed

(the array is already sorted)

� T(n) is	a	linear	function

16

𝑻 𝒏 = 𝑐!𝑛 + 𝑐" 𝑛 − 1 + 𝑐# 𝑛 − 1 + 𝑐$)
%&"

'

𝑡% +

+𝑐()
%&"

'

(𝑡% − 1) + 𝑐))
%&"

'

(𝑡% − 1) + 𝑐*)
%&"

'

𝑡% − 1

+

=

= 𝑐!𝑛 + 𝑐" 𝑛 − 1 + 𝑐# 𝑛 − 1 + 𝑐$ 𝑛 − 1

Insertion Sort 1st algorithm:
the Running time - Worst case
� Worst	case:	inner	loop	body	executed	for	all	previous	
elements	(the	array	is	initially	sorted	in	the	reverse
order)

� T(n) is	a	quadratic	function

17

𝑻 𝒏 = 𝑐!𝑛 + 𝑐" 𝑛 − 1 + 𝑐# 𝑛 − 1 + 𝑐$)
%&"

',!

𝑗 +

+𝑐()
%&"

'

(𝑗 − 1) + 𝑐))
%&"

'

(𝑗 − 1) + 𝑐*)
%&"

'

(𝑗 − 1) =

= 𝑐!𝑛 + 𝑐" 𝑛 − 1 + 𝑐# 𝑛 − 1 + 𝑐$
𝑛(2 + 𝑛 + 1)

2 +

+𝑐(
(𝑛 − 1)(1 + 𝑛 − 1)

2
+ 𝑐)

(𝑛 − 1)(1 + 𝑛 − 1)
2

+ 𝑐*
(𝑛 − 1)(1 + 𝑛 − 1)

2

Insertion Sort 1st-a algorithm:
the Running time

for jß 2 to length[A]

do { keyß A[j]

// Insert A[j] into the sorted sequence A[1…j-1]

iß j - 1

while (i > 0) and (A[i] > key)

do { A[i+1] ß A[i]

iß i - 1

}

A[i+1] ß key

}
18

Insertion Sort 1st-a algorithm:
the Running time

Statement Running Time

InsertionSort(A, n)

for jß 2 to n c1n
do { keyß A[j] c2(n - 1)

// Insert A[j] into the sorted sequence A[1…j-1] 0
iß j - 1 c4(n - 1)
while (i > 0) and (A[i] > key) c5 T

do { A[i+1] ß A[i] c6 (T(n - 1))
iß i - 1 c7 (T(n - 1))

}
A[i + 1] ß key c8 (n - 1)
}

T = t2 + t3 + …+ tn, where tj is the number of while expression evaluations for the
jth for loop iteration

19

Insertion Sort 1st-a algorithm:
the Running time

What can T(n) be?
Best case -- inner loop body never executed (the array is already sorted)

tj= 1 è T(n) is a linear function
Worst case -- inner loop body executed for all previous elements

tj= jè T(n) is a quadratic function
Average case

???
20

𝑻 𝒏 = 𝑐!𝑛 + 𝑐" 𝑛 − 1 + 𝑐# 𝑛 − 1 + 𝑐$)
%&"

'

𝑡% +

+𝑐()
%&"

'

(𝑡% − 1) + 𝑐))
%&"

'

(𝑡% − 1) + 𝑐*(𝑛 − 1)

Insertion Sort 1st-a algorithm:
the Running time - Best case
� Best case: inner loop body never executed

(the array is already sorted)

� T(n) is	a	linear	function

21

𝑻 𝒏 = 𝑐!𝑛 + 𝑐" 𝑛 − 1 + 𝑐# 𝑛 − 1 + 𝑐$)
%&"

'

𝑡% +

+𝑐()
%&"

'

(𝑡% − 1) + 𝑐))
%&"

'

(𝑡% − 1)

+

+ 𝑐* 𝑛 − 1 =

= 𝑐!𝑛 + 𝑐" 𝑛 − 1 + 𝑐# 𝑛 − 1 + 𝑐$ 𝑛 − 1 + 𝑐* 𝑛 − 1

Insertion Sort 1st-a algorithm:
the Running time - Worst case
� Worst	case:	inner	loop	body	executed	for	all	previous	
elements	(the	array	is	initially	sorted	in	the	reverse order)

� T(n) is	a	quadratic	function

22

𝑻 𝒏 = 𝑐!𝑛 + 𝑐" 𝑛 − 1 + 𝑐# 𝑛 − 1 + 𝑐$)
%&"

',!

𝑗 +

+𝑐()
%&"

'

(𝑗 − 1) + 𝑐))
%&"

'

(𝑗 − 1) + 𝑐*(𝑛 − 1) =

= 𝑐!𝑛 + 𝑐" 𝑛 − 1 + 𝑐# 𝑛 − 1 + 𝑐$
𝑛(2 + 𝑛 + 1)

2
+

+𝑐(
(𝑛 − 1)(1 + 𝑛 − 1)

2 + 𝑐)
(𝑛 − 1)(1 + 𝑛 − 1)

2 + 𝑐*(𝑛 − 1)

Running time: What is more
important to analyze?
� Best	case?
� Worst	case?
� Average	case?
� Some	of	them?
� All?

23

Running time: the worst case is
the most interesting!
� The	worst-case running	time	gives	a	guaranteed	upper	
bound for	any	input.

� For	many	algorithms,	the	worst	case	occurs	often.	For	
example,	when	searching,	the	worst	case	often	occurs	
when	the	item	being	searched	for	is	not	present,	and	
searches	for	empty	items	may	be	frequent.

24

Running time: Average case
� The	average	case	is	interesting	and	important,	
because	it	gives	a	closer	estimation	of	the	realistic	
running	time.

� However,	its	consideration	usually	requires	more	
efforts	(algebraic	transformations,	etc.).

� On	the	other	hand,	it	is	often	roughly	as	“bad”	as	the	
worst	case.

� Hence,	it	is	often	enough	to	consider	the	worst	case.

25

Running time
� The	worst	case	is	the	most	interesting.
� The	average	case	is	interesting,	but	often	is	as	“bad”	as	
the	worst	case	and	may	be	estimated	by	the	worst	case.

� The	best	case	is	the	least	interesting.

26

Activity
� Reorder	the	following	efficiencies	from	smallest	to	
largest:
a) n log n
b) n + n2 + n3 + n4

c) 101
d) n3

e) n5 log n

27

