Algorithms:

Design and Correctness
 Prepared by Hyrum D. Carroll
 (based on slides from Suk Jin Lee)

Algorithms Representation:

Pseudocode

\leftarrow	Assignment	$i \leftarrow j+1 \quad i \leftarrow i-1$
for...do	for loop	for $i \leftarrow 1$ to n do loop body
while...do	while loop	i is a loop counter (loop variable) while (logical condition) do loop body
[1..n]	a range within an array	$a[1 . . n]$
$\mathrm{a}[i]$	the $i^{\text {th }}$ element of the array	
length[a]	length of array a	
//	the reminder of the line is	comment
if then else	conditional branching	if $<$ logical condition $>$ then $<$ statement(s) $>$ else $<$ statement(s)>

Sorting Problem

- Input
- A sequence of n numbers
$\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
- Output
- A permutation (reordering)
$\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right) \quad$ such that $\quad a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \ldots \leq a_{n}{ }^{\prime}$

Insertion Sort - $1^{\text {st }}$ algorithm

- Insertion $\operatorname{Sort}^{1}(A)$
for $j \leftarrow 2$ to length $[A]$ do $\{\boldsymbol{k e y} \leftarrow A[j]$
$/ /$ Insert $A[j]$ into the sorted sequence $A[1 \ldots j-1]$
$i \leftarrow j-1$ while $(i>0)$ and $(A[i]>$ key $)$

$$
\begin{aligned}
& \text { do }\{A[i+1] \leftarrow A[i] \\
& i \leftarrow i-1 \\
& A[i+1] \leftarrow \mathrm{key}\}
\end{aligned}
$$

Insertion Sort: Example

Array 524613

$$
\begin{array}{ll}
j=2: & \underline{52} 4613 \rightarrow 254613 \\
j=3: & 2 \underline{54613} \rightarrow 245613 \\
j=4: & 245613 \rightarrow \\
j=5: & 245 \underline{61} 3 \rightarrow 24 \underline{5163} \rightarrow 2 \underline{41563 \rightarrow \underline{21} 4563 \rightarrow 124563} \\
j=6: & 1245 \underline{63} \rightarrow 124 \underline{53} 6 \rightarrow 12 \underline{43} 56 \rightarrow 123456
\end{array}
$$

9 swapping operations, 30 logical conditions (comparisons), for loop with 5 iterations

Insertion Sort - $1^{\text {st-a }}$ algorithm

- Insertion $\operatorname{Sort}^{1-\mathrm{a}}(A)$
for $j \leftarrow 2$ to length $[A]$

$$
\begin{aligned}
& \text { do }\{\text { key } \leftarrow A[j] \\
& \quad / / \text { Insert } A[j] \text { into the sorted se } \\
& i \leftarrow j-1 \\
& \text { while }(i>0) \text { and }(A[i]>\text { key }) \\
& \quad \text { do }\{\mathrm{A}[i+1] \leftarrow \mathrm{A}[i] \\
& \quad i \leftarrow i-1\} \\
& \begin{array}{l}
A[i+1]
\end{array}<\text { key } \\
& \}
\end{aligned}
$$

$$
/ / \text { Insert } A[j] \text { into the sorted sequence } A[1 \ldots j-1]
$$

Insertion Sort: Example

Array 524613

$$
\begin{array}{ll}
j=2: & \underline{5} \mathbf{2} 4613 \rightarrow \underline{\mathbf{5}} 4613 \rightarrow 254613 \\
j=3: & 2 \underline{5} 4613 \rightarrow 2 \quad \underline{\mathbf{5}} 613 \rightarrow 245613 \\
j=4: & 24 \underline{5} 613 \rightarrow \\
j=5: & 245 \underline{6} \underline{1} 3 \rightarrow 24 \underline{5} \underline{\mathbf{6}} 3 \rightarrow 2 \underline{4} \underline{\mathbf{5}} 63 \rightarrow \underline{2} \underline{4} 563 \rightarrow \underline{\mathbf{2}} 456 \rightarrow \\
& \mathbf{1} 2456 \\
j=6: & 1245 \underline{6} 3 \rightarrow 124 \underline{5} \underline{\mathbf{6}} \rightarrow 12 \underline{4} \underline{\mathbf{5}} 6 \rightarrow 1 \underline{2} \underline{\mathbf{4}} 56 \rightarrow 123456
\end{array}
$$

4 swapping operations, 9 movements of the array elements, $\mathbf{3 0}$ logical conditions (comparisons), for loop with 5 iterations

Correctness of an algorithm

- Any algorithm must be correct, which means that it has to produce the desired result (some value or set of values) from the relevant input
- A proof of the correctness is a very important task!

Method to prove the

 Correctness of an algorithm- Loop Invariant
- Induction
- Many other methods that are out of scope of this course

Loop Invariant

- Loop Invariant is a logical statement, which can help us understand why an algorithm, which is implemented as a loop (iterative process) gives the correct answer
- Loop invariant can be used to prove the correctness of both a "while" loop and a "for" loop

Loop Invariant Properties

- Initialization: it is true prior to the first iteration of the loop
- Maintenance: if it is true before an iteration of the loop, it remains true before the next iteration
- Termination: when the loop terminates, the invariant - usually along with the reason that the loop terminated - gives us a useful property that helps to show that the algorithm is correct

Loop Invariant - Example.

$1^{\text {st }}$ Sorting Algorithm (Insertion-Sort)

- At the start of each iteration of the "outer" (for) loop, which is indexed by j, the subarray consisting of elements $A[1 . . j-1]$ is already sorted

Loop Invariant - Example.

$1^{\text {st }}$ Sorting Algorithm (Insertion-Sort)

- Initialization
- The loop invariant holds before the first loop iteration, when $j=2$.
- Maintenance
- Each iteration maintains the loop invariant until it finds the proper position for $A[j]$.
- Termination
- Each loop iteration increases j by 1 .
$j>$ Length $[A]=n \quad \Rightarrow \quad j=n+1$ subarray $A[1 \ldots n]$ consists of the elements originally in $A[1 \ldots n]$, in sorted order.

Induction

- Suppose
- Basis: $S(j)$ is true for fixed constant k
- Often $k=0$ or $k=1$, but can be any integer
- Inductive hypothesis: $S(n)$ is true
- Inductive step: If $S(n)$ is true ${ }^{n}(n+1)$ is true too
- Then $S(j)$ is true for all $j \geq k$
- This means that if $S(k)$ is true for the fixed constant k and it follows from $S(j)$ is true for $j=n$ that $S(j)$ is true for $j=n+1$, then $S(j)$ is true for all $j \geq k$

Proof By Induction

- Claim: $S(j)$ is true for all $j \geq k$
- Basis:
- Show a statement is true when $j=k$
- Inductive hypothesis:
- Assume the statement is true for an arbitrary $j=n$
- Step:
- Show that implication $S(n) \rightarrow S(n+1)$ is true, thus the statement is then true for any j

Induction Example:

Arithmetic Progression

- Arithmetic Progression is a sequence of numbers such that the difference of any two successive members of the sequence is a constant:

$$
a_{1}, a_{1}+d, a_{1}+2 d, \ldots, a_{1}+n d
$$

- d is the difference of the progression
- $a_{n}=$?

Induction Example 1:

Arithmetic Progression

- Prove

$$
a_{n}=a_{1}+(n-1) d
$$

- Basis:
- If $\boldsymbol{n}=\mathbf{1}$, then $\boldsymbol{a}_{\mathbf{1}} \frac{\frac{1}{\tau}}{\tau} a_{1}+(1-1) d=a_{1}+0 d=\boldsymbol{a}_{\mathbf{1}}$
- Inductive hypot'hesis (assume true for n):
- Assume $\quad a_{n}=a_{1}+(n-1) d$
- Step (show tríue for $n+1$)
- a_{n+1}

$$
\begin{aligned}
& =a_{n}+d=a_{1}+(n-1) d+d \\
& =a_{1}+n d-d+d=a_{1}+((n+1)-1) d
\end{aligned}
$$

Induction Example 2:

Arithmetic Progression

- The sum of the first n members of the arithmetic progression is given by

$$
S=\frac{a_{1}+a_{n}}{2} n
$$

- Particularly, for the progression with the first member 1 and the difference 1

$$
S=\frac{1+n}{2} n=\frac{n(1+n)}{2}
$$

Induction Example 2:

Arithmetic Progression

- Prove $1+2+3+\ldots+n=n(n+1) / 2$
- Basis:
- If $n=0$, then $0=0(0+1) / 2$
- Inductive hypothesis (assume true for n):
- Assume $1+2+3+\ldots+n=n(n+1) / 2$
- Step (show true for $n+1$):

$$
\begin{aligned}
1+2+\ldots+n+(n+1) & =(1+2+\ldots+n)+(n+1) \\
& =n(n+1) / 2+2(n+1) / 2 \\
& =[n(n+1)+2(n+1)] / 2 \\
& =(n+1)(n+2) / 2 \\
& =(n+1)((n+1)+1) / 2
\end{aligned}
$$

How to prove correctness of an algorithm using induction?

- Induction can be used to prove the correctness of any "for" loop and any algorithm whose main part is a "for" loop
- How it works?

How to prove correctness of an algorithm using induction?

- We have to check whether a loop whose correctness we need to prove produces a correct output from the smallest reasonable input (for the lowest reasonable end value of the loop variable j) (basis)
- Then, we assume that the loop works correctly for $j=1 \ldots n$ (inductive hypothesis)
- Then we have to show that from the fact that the loop produces a correct result for $j=1 \ldots n$, it follows that it produces the correct result for
$j=n+1$ (inductive step)

Strong Induction

- We've been using weak induction
- Strong induction means
- Basis: show $S(k)$
- Hypothesis: assume $S(j)$ holds for arbitrary $j \leq n$
- Step: Show $S(n+1)$ follows
- Another variation:
- Basis: show $S(0), S(1)$
- Hypothesis: assume $S(n)$ and $S(n+1)$ are true
- Step: show $(S(n) \cap S(n+1) \rightarrow S(n+2)$

