
Prepared	by	Hyrum	D.	Carroll
(based	on	slides	from	Suk	Jin Lee)

Algorithms Representation:
Pseudocode

ß Assignment iß j+1 iß i-1

for…do for loop for iß1 to n do
loop body

i is a loop counter (loop variable)

while…do while loop while (logical condition) do
loop body

[1..n] a range within an array a[1..n]

a[i] the ith element of the array

length[a] length of array a

// the reminder of the line is a comment

if then else conditional branching if <logical condition>
then <statement(s)>
else <statement(s)>

2

Sorting Problem
� Input

� A	sequence	of	n numbers
(a1, a2,…, an)

� Output
� A	permutation	(reordering)

(a1¢, a2¢,…, an¢) such	that a1¢ £ a2¢ £ … £ an¢

3

Insertion Sort – 1st algorithm
� INSERTION SORT1	(A)
for jß 2 to length[A]

do { keyß A[j]

// Insert A[j] into the sorted sequence A[1…j-1]

iß j - 1

while (i > 0) and (A[i] > key)

do { A[i+1] ß A[i]

iß i - 1

A[i + 1] ß key}

}
4

Insertion Sort: Example
Array 5 2 4 6 1 3

j = 2: 5 2 4 6 1 3 à 2 5 4 6 1 3

j = 3: 2 5 4 6 1 3 à 2 4 5 6 1 3

j = 4: 2 4 5 6 1 3 à

j = 5: 2 4 5 6 1 3 à 2 4 5 1 6 3 à 2 4 1 5 6 3 à 2 1 4 5 6 3 à1 2 4 5 6 3

j = 6: 1 2 4 5 6 3à 1 2 4 5 3 6 à 1 2 4 3 5 6 à 1 2 3 4 5 6

9 swapping operations, 30 logical conditions (comparisons),

for loop with 5 iterations

5

Insertion Sort – 1st-a algorithm
� INSERTION SORT1-a(A)
for jß 2 to length[A]

do { keyß A[j]

// Insert A[j] into the sorted sequence A[1…j-1]

iß j - 1

while (i > 0) and (A[i] > key)

do { A[i+1] ß A[i]

iß i - 1}

A[i+1] ß key

}
6

Insertion Sort: Example
Array 5 2 4 6 1 3

j = 2: 5 2 4 6 1 3 à � 5 4 6 1 3 à 2 5 4 6 1 3

j = 3: 2 5 4 6 1 3 à 2 � 5 6 1 3 à 2 4 5 6 1 3

j = 4: 2 4 5 6 1 3 à

j = 5: 2 4 5 6 1 3 à 2 4 5 � 6 3 à 2 4 � 5 6 3 à 2 � 4 5 6 3 à � 2 4 5 6 à
1 2 4 5 6 3

j = 6: 1 2 4 5 6 3à 1 2 4 5 � 6à 1 2 4 � 5 6 à 1 2 � 4 5 6 à 1 2 3 4 5 6

4 swapping operations, 9 movements of the array elements, 30 logical
conditions (comparisons), for loop with 5 iterations

7

Correctness of an algorithm
� Any	algorithm	must	be	correct,	which	means	that	it	
has	to	produce	the	desired	result	(some	value	or	set	of	
values)	from	the	relevant	input

� A	proof	of	the	correctness	is	a	very	important	task!

8

Method to prove the
Correctness of an algorithm
� Loop	Invariant
� Induction
� Many	other	methods	that	are	out	of	scope	of	this	
course

9

Loop Invariant
� Loop	Invariant	is	a	logical	statement,	which	can	help	
us	understand	why	an	algorithm,	which	is	
implemented	as	a	loop (iterative	process)	gives	the	
correct	answer

� Loop	invariant	can	be	used	to	prove	the	correctness	of	
both	a	“while”	loop	and	a	“for”	loop

10

Loop Invariant Properties
� Initialization:	it	is	true prior	to	the	first	iteration	of	
the	loop

� Maintenance:	if	it	is	true before	an	iteration	of	the	
loop,	it	remains	true	before	the	next	iteration

� Termination:	when	the	loop	terminates,	the	invariant	
– usually	along	with	the	reason	that	the	loop	
terminated	– gives	us	a	useful	property	that	helps	to	
show	that	the	algorithm	is	correct

11

Loop Invariant – Example.
1st Sorting Algorithm (Insertion-Sort)
� At	the	start	of	each	iteration	of	the	“outer”	(for)	loop,	
which	is	indexed	by	j,	the	subarray	consisting	of	
elements	A[1 .. j-1] is	already	sorted

12

Loop Invariant – Example.
1st Sorting Algorithm (Insertion-Sort)
� Initialization

� The	loop	invariant	holds	before	the	first	loop	iteration,	
when	j =	2.

� Maintenance
� Each	iteration	maintains	the	loop	invariant
until	it	finds	the	proper	position	for	A[j].

� Termination
� Each	loop	iteration	increases	j by	1.	

j >	Length[A]	=	n Þ j =	n +	1
subarray	A[1 …	n]	consists	of	the	elements	originally	in	
A[1 …	n],	in	sorted	order.	

13

Induction
� Suppose	

� Basis:	S (j) is	true	for	fixed	constant	k
� Often	k = 0 or	k = 1,	but	can	be	any	integer

� Inductive	hypothesis:	S (n) is	true
� Inductive	step:	If S (n) is	true	! S (n+1) is	true	too

� Then S (j) is	true	for	all	j ³ k
� This	means	that	if	S (k) is	true	for	the	fixed	constant	k and	

it	follows	from	S (j) is	true	for	j = n that	S (j) is	true	
for	j = n + 1,	then	S (j) is	true	for	all	j ³ k

14

Proof By Induction
� Claim:	S (j) is	true	for	all	j ³ k
� Basis:

� Show	a	statement	is	true	when	j = k
� Inductive	hypothesis:

� Assume	the	statement	is	true	for	an	arbitrary	j = n
� Step:

� Show	that	implication	S(n) à S(n+1) is	true,	thus	the	
statement	is	then	true	for	any	j

15

Induction Example:
Arithmetic Progression
� Arithmetic	Progression	is	a	sequence	of	numbers	such	
that	the	difference	of	any	two	successive	members	of	
the	sequence	is	a	constant:

a1, a1 + d, a1 + 2d,…, a1 + nd

� d is	the	difference	of	the	progression	
� an=?

16

Induction Example 1:
Arithmetic Progression
� Prove an = a1 + (n - 1)d

� Basis:
� If	n = 1,	then	a1 = a1 + (1 - 1)d = a1 + 0d = a1

� Inductive	hypothesis	(assume	true	for	n):
� Assume an = a1 + (n - 1)d

� Step (show	true	for	n + 1)
� an+1 = an + d = a1 + (n - 1)d + d

= a1 + nd - d + d = a1 + ((n + 1) - 1)d

17

Induction Example 2:
Arithmetic Progression
� The	sum	of	the	first	n members	of	the	arithmetic	
progression	is	given	by

� Particularly,	for	the	progression	with	the	first	member	
1 and	the	difference	1

naaS n

2
1 +=

2
)1(

2
1 nnnnS +

=
+

=

18

Induction Example 2:
Arithmetic Progression
� Prove 1 + 2 + 3 + … + n = n(n + 1) / 2

� Basis:
� If	n = 0,	then	0 = 0(0+1) / 2

� Inductive	hypothesis (assume	true	for	n):	
� Assume	1 + 2 + 3 + … + n = n(n + 1) / 2

� Step (show	true	for	n + 1):
� 1 + 2 + … + n + (n + 1) = (1 + 2 + … + n) + (n + 1)

= n(n + 1) / 2 + 2(n + 1) / 2
= [n(n + 1) + 2(n + 1)] / 2
= (n + 1)(n + 2) / 2
= (n + 1)((n + 1) + 1) / 2

19

How to prove correctness of an
algorithm using induction?
� Induction can	be	used	to	prove	the	correctness	of	any	
“for”	loop	and	any	algorithm	whose	main	part	is	a	“for”	
loop

� How	it	works?

20

How to prove correctness of an
algorithm using induction?
� We	have	to	check	whether	a	loop	whose	correctness	we	
need	to	prove	produces	a	correct	output	from	the	
smallest	reasonable	input	(for	the	lowest	reasonable	
end	value	of	the	loop	variable	j)	(basis)

� Then,	we	assume	that	the	loop	works	correctly	for
j = 1…n (inductive	hypothesis)

� Then	we	have	to	show	that	from	the	fact	that	the	loop	
produces	a	correct	result	for	j=1…n,	it	follows	that	it	
produces	the	correct	result	for	
j = n + 1(inductive	step)

21

Strong Induction
�We’ve	been	using	weak	induction
� Strong	induction	means

� Basis:	show	S(k)
� Hypothesis:	assume	S(j) holds	for	arbitrary j £ n
� Step:	Show	S(n + 1)	follows

� Another	variation:
� Basis:	show	S(0), S(1)
� Hypothesis:	assume	S(n) and	S(n+1) are	true
� Step:	show	(S(n) Ç S(n+1) à S(n+2)

22

