S

Algorithms:
Designh and Correctness

rum D. Carroll
uk Jin Lee)

_ Algorithms Representation:
Pseudocode

< Assignment i€+l i€i-l
for...do for loop for i< 1 ton do
loop body

i is a loop counter (loop variable)

while...do while loop while (logical condition) do
loop body

[1..n] a range within an array all..n]

a[i] the it element of the array

length|[a] length of array a
// the reminder of the line 1s a comment

if then else ~ conditional branching if <logical condition>
then <statement(s)>
else <statement(s)>

P e

Sorting Problem

Input
e A sequence of n numbers

(611, dy,. .., an)

Output

e A permutation (reordering)
(a.at.....al) such that g =a)

IN
AN
N

Insertion Sort — 1t algorithm

INSERTION SORT! (A)
for j < 2 to length[A]
do { key € A[/]
// Insert A[j] into the sorted sequence A[1...j—1]
i<j—1
while (i > 0) and (4[i] > key)
do { A[i+1] € A[i]
i<i-1
Ali+ 1] € key}

P e

Insertion Sort: Example
Array 52461 3

246132254613

254613>245613
20t
2456132245163 >241563>2145632>124563

124563>124536>124356>123456

o R
I
AN L A W N

9 swapping operations, 30 logical conditions (comparisons),

for loop with 5 iterations

Insertion Sort — 15%2 algorithm

INSERTION SORT*2(A)
for j < 2 to length[A]

do { key € A[/]
// Insert A[j] into the sorted sequence A[1...j—1]
i<j—1
while (i > 0) and (4[i] > key)
do { A[i+1] € A[{]
i€<i—1}
A[i+1] € key
;

Insertion Sort: Example
Array 52461 3

j=2: 524613>0154613>254613

j=3: 254613>205613>245613

j=4: 245613>

j=5 245613>245063>240563>204563>02456>
124563

j=6: 124563>1245006>1240156>1201456>123456

4 swapping operations, 9 movements of the array elements, 30 logical
conditions (comparisons), for loop with 5 iterations

_

Correctness of an algorithm

Any algorithm must be correct, which means that it
has to produce the desired result (some value or set of
values) from the relevant input

A proof of the correctness is a very important task!

_ Method to mhe\/

Correctness of an algorithm

® Loop Invariant
* Induction

* Many other methods that are out of scope of this
course

_
Loop Invariant

Loop Invariant is a logical statement, which can help
us understand why an algorithm, which is
implemented as a loop (iterative process) gives the
correct answer

Loop invariant can be used to prove the correctness of
both a “while” loop and a “for” loop

10

_
Loop Invariant Properties

Initialization: it is true prior to the first iteration of
the loop

Maintenance: if it is true before an iteration of the
loop, it remains true before the next iteration

Termination: when the loop terminates, the invariant
— usually along with the reason that the loop
terminated — gives us a useful property that helps to
show that the algorithm is correct

11

\/"

~Loop Invariant — Example.
15t Sorting Algorithm (Insertion-Sort)

At the start of each iteration of the “outer” (for) loop,
which is indexed by j, the subarray consisting of
elements A4[1 .. j—1] is already sorted

Loop Invariant — Example.

15t Sorting Algorithm (Insertion-Sort)

Initialization
e The loop invariant holds before the first loop iteration,
when j = 2.
Maintenance

e Each iteration maintains the loop invariant
until it finds the proper position for 4[/].

Termination

e Each loop iteration increases j by 1.
j > Length[A] =n — j=n+1
subarray A[1 ... n] consists of the elements originally in

A[l ... n], in sorted order.
13

. cg———

Induction
® Suppose

e Basis: S (j) is true for fixed constant k&
e Often k=0 or k=1, but can be any integer

e Inductive hypothesis: S (n) is true
e Inductive step: If S (n) is true m S (n+1) is true too

* Then S (j) is true forall j > k&

This means that if S (k) is true for the fixed constant £ and
it follows from S (j) is true for j = n that S (j) is true
forj=n+ 1, then S (j) is true forallj > k£

14

Proof By Induction

Claim: S (j) is true forallj > k
Basis:
e Show a statement is true when j =k
Inductive hypothesis:
e Assume the statement is true for an arbitrary j = n
Step:
e Show that implication S(n) = S(n+1) is true, thus the
statement is then true for any

L5

Induction Example:

Arithmetic Progression

Arithmetic Progression is a sequence of numbers such
that the difference of any two successive members of
the sequence is a constant:

ar. d td a t2d.. . a tnd

d is the difference of the progression
a ="

n

_ Induction Exmf:\/

Arithmetic Progression

°* Prove !a,=a;+(n—-1)d
e -
° Ifn=1,thenall#la1+(l —1d=a,+0d=a,
e Inductive hypothesis (assume true for n):
« Assume ! a,=a;+(n-1)d

e Step (show true forn + 1)

v a1 =atd=gt@m-Dd+d
=aq;+nd -d+d=a;+(n+1)-1)

17

tnduction Example 2:
Arithmetic Progression

The sum of the first » members of the arithmetic
progression is given by

_a +a,
2

S n

Particularly, for the progression with the first member
1 and the difference 1

S=1+nn= n(l+n)

2 2

_ Induction Exm[:\/

Arithmetic Progression

e Provel + 2+ 3+ +n=pnt1) 2
e Basis:
o If n=0,then 0=0(0+1)/2
e Inductive hypothesis (assume true for n):
e Assumel +2+3+ ... +n=nn+1)/2

e Step (show true for n + 1):

sl b E B) e e o
=nn+1)/2+2n+1)/2
=[nrnr+1)+2(n+1)]/2
=m+1)n+2)/2
=mn+D((n+1)+1)/2

~ How to prove correctness of an

algorithm using induction?

Induction can be used to prove the correctness of any

“for” loop and any algorithm whose main part is a “for”
loop

How it works?

e e L

How to prove correctness of an
algorithm using induction?

We have to check whether a loop whose correctness we
need to prove produces a correct output from the
smallest reasonable input (for the lowest reasonable
end value of the loop variable ;) (basis)

Then, we assume that the loop works correctly for
j = 1...n (inductive hypothesis)

Then we have to show that from the fact that the loop
produces a correct result for j=1...n, it follows that it
produces the correct result for

Jj =n + 1(inductive step)

/, e
Strong Induction

We'’ve been using weak induction
Strong induction means
 Basis: show S(k)
e Hypothesis: assume S(j) holds for arbitrary j <
e Step: Show S(n + 1) follows
Another variation:
e Basis: show S(0), S(1)
e Hypothesis: assume S(n) and S(n+1) are true
e Step: show (S(n) N S(n+1) = S(n+2)

22

