Algorithms: Design and Correctness Prepared by Hyrum D. Carroll (based on slides from Suk Jin Lee)

Algorithms Representation:

Pseudocode

÷	Assignment	$i \leftarrow j+1 i \leftarrow i-1$
fordo	for loop	for <i>i</i> ←1 to <i>n</i> do loop body
		<i>i</i> is a loop counter (loop variable)
whiledo	while loop	while (logical condition) do loop body
[1 <i>n</i>]	a range within an array	a[1n]
a[<i>i</i>]	the i^{th} element of the array	
length[a]	length of array <i>a</i>	
//	the reminder of the line is a comment	
if then else	conditional branching	<pre>if <logical condition=""> then <statement(s)> else <statement(s)></statement(s)></statement(s)></logical></pre>

Sorting Problem

- Input
 - A sequence of *n* numbers $(a_1, a_2, ..., a_n)$
- Output
 - A permutation (reordering) $(a_1', a_2', ..., a_n')$ such that

 $a_1' \leq a_2' \leq \ldots \leq a_n'$

Insertion Sort – 1st algorithm

- INSERTION SORT (A)
 - for $j \leftarrow 2$ to length[A]
 - do { key $\leftarrow A[j]$

// Insert A[j] into the sorted sequence A[1...j-1]

```
i \leftarrow j - 1
```

while $(i \ge 0)$ and $(A[i] \ge \text{key})$

```
do { A[i+1] \leftarrow A[i]
i \leftarrow i-1
A[i+1] \leftarrow \text{key}}
```

Insertion Sort: Example

Array 524613

- j = 2: <u>5 2</u> 4 6 1 3 \rightarrow 2 5 4 6 1 3
- j = 3: 2 5 4 6 1 3 \rightarrow 2 4 5 6 1 3
- j = 4: 2 4 5 6 1 3 \rightarrow
- j = 5: 245<u>61</u>3 \rightarrow 24<u>51</u>63 \rightarrow 2<u>41</u>563 \rightarrow <u>21</u>4563 \rightarrow <u>1</u>24563
- j = 6: 1245<u>63</u> \rightarrow 124<u>53</u>6 \rightarrow 12<u>43</u>56 \rightarrow 123456

9 swapping operations, 30 logical conditions (comparisons), for loop with 5 iterations

Insertion Sort – 1^{st-a} algorithm

- INSERTION SORT^{1-a}(A)
 - for $j \leftarrow 2$ to length[A]

do { key $\leftarrow A[j]$

// Insert A[j] into the sorted sequence A[1...j-1]

 $i \leftarrow j - 1$

```
while (i \ge 0) and (A[i] \ge \text{key})
```

```
do { A[i+1] \leftarrow A[i]
```

```
i \leftarrow i - 1\}
```

 $A[i+1] \leftarrow \text{key}$

}

Insertion Sort: Example

Array 524613

- j = 2: <u>5</u> 2 4 6 1 3 \rightarrow <u>5</u> 4 6 1 3 \rightarrow 2 5 4 6 1 3
- j = 3: $2 \underline{5} 4 6 1 3 \rightarrow 2$ $\underline{5} 6 1 3 \rightarrow 2 4 5 6 1 3$
- j = 4: 2 4 5 6 1 3 \rightarrow
- $j = 5: \quad 2 4 5 \underline{6} 1 3 \rightarrow 2 4 \underline{5} \quad \underline{6} 3 \rightarrow 2 \underline{4} \quad \underline{5} 6 3 \rightarrow \underline{2} \quad \underline{4} 5 6 3 \rightarrow \underline{4} \quad \underline{5} 6 3 \rightarrow \underline{5} \quad \underline{5}$
- j = 6: 1245<u>6</u>3 \rightarrow 124<u>5</u><u>6</u> \rightarrow 12<u>4</u><u>5</u>6 \rightarrow 12<u>4</u><u>5</u>6 \rightarrow 12<u>3</u>456

4 swapping operations, 9 movements of the array elements, 30 logical conditions (comparisons), for loop with 5 iterations

Correctness of an algorithm

- Any algorithm must be **correct**, which means that it has to produce the desired result (some value or set of values) from the relevant input
- A proof of the correctness is a very important task!

Method to prove the

Correctness of an algorithm

- Loop Invariant
- Induction
- Many other methods that are out of scope of this course

Loop Invariant

- Loop Invariant is a logical statement, which can help us understand why an algorithm, which is implemented as a loop (iterative process) gives the correct answer
- Loop invariant can be used to prove the correctness of both a "while" loop and a "for" loop

Loop Invariant Properties

- Initialization: it is true prior to the first iteration of the loop
- Maintenance: if it is true before an iteration of the loop, it remains true before the next iteration
- Termination: when the loop terminates, the invariant

 usually along with the reason that the loop
 terminated gives us a useful property that helps to
 show that the algorithm is correct

Loop Invariant – Example. 1st Sorting Algorithm (Insertion-Sort)

 At the start of each iteration of the "outer" (for) loop, which is indexed by *j*, the subarray consisting of elements *A*[1 .. *j*–1] is already sorted

Loop Invariant – Example.

1st Sorting Algorithm (Insertion-Sort)

Initialization

• The loop invariant holds before the first loop iteration, when *j* = 2.

Maintenance

• Each iteration maintains the loop invariant until it finds the proper position for *A*[*j*].

Termination

Each loop iteration increases *j* by 1.
 j > Length[*A*] = *n* ⇒ *j* = *n* + 1
 subarray *A*[1 ... *n*] consists of the elements originally in *A*[1 ... *n*], in sorted order.

Induction

Suppose

- Basis: *S*(*j*) is true for fixed constant *k*
 - Often k = 0 or k = 1, but can be any integer
- Inductive hypothesis: *S*(*n*) is true
- Inductive step: If S(n) is true $\implies S(n+1)$ is true too
- Then S(j) is true for all $j \ge k$
- This means that if S(k) is true for the fixed constant k and it follows from S(j) is true for j = n that S(j) is true for j = n + 1, then S(j) is true for all $j \ge k$

Proof By Induction

- Claim: S(j) is true for all $j \ge k$
- Basis:
 - Show a statement is true when j = k
- Inductive hypothesis:
 - Assume the statement is true for an arbitrary j = n
- Step:
 - Show that implication S(n) → S(n+1) is true, thus the statement is then true for any j

Induction Example:

Arithmetic Progression

• Arithmetic Progression is a sequence of numbers such that the difference of any two successive members of the sequence is a constant:

 $a_1, a_1 + d, a_1 + 2d, \dots, a_1 + nd$

- *d* is the difference of the progression
- $a_n = ?$

Induction Example 1:

Arithmetic Progression

- **Prove** $a_n = a_1 + (n-1)d$
 - Basis:
 - If n = 1, then $a_1 \neq a_1 + (1 1)d = a_1 + 0d = a_1$
 - Inductive hypothesis (assume true for *n*):
 - Assume $a_n = a_1 + (n-1)d$
 - Step (show true for n + 1)

•
$$a_{n+1} = a_n + d = \underline{a_1 + (n-1)d} + d$$

= $a_1 + nd - d + d = a_1 + ((n+1) - 1)d$

Induction Example 2:

Arithmetic Progression

• The sum of the first *n* members of the arithmetic progression is given by

$$S = \frac{a_1 + a_n}{2}n$$

 Particularly, for the progression with the first member 1 and the difference 1

$$S = \frac{1+n}{2}n = \frac{n(1+n)}{2}$$

Induction Example 2:

Arithmetic Progression

• Prove $1 + 2 + 3 + \ldots + n = n(n+1) / 2$

• Basis:

• If n = 0, then 0 = 0(0+1) / 2

- Inductive hypothesis (assume true for *n*):
 - Assume $1 + 2 + 3 + \ldots + n = n(n+1) / 2$
- Step (show true for n + 1):

•
$$1 + 2 + ... + n + (n + 1) = (1 + 2 + ... + n) + (n + 1)$$

= $n(n + 1) / 2 + 2(n + 1) / 2$
= $[n(n + 1) + 2(n + 1)] / 2$
= $(n + 1)(n + 2) / 2$
= $(n + 1)((n + 1) + 1) / 2$

How to prove correctness of an algorithm using induction?

- *Induction* can be used to prove the correctness of any "for" loop and any algorithm whose main part is a "for" loop
- How it works?

How to prove correctness of an algorithm using induction?

- We have to check whether a loop whose correctness we need to prove produces a correct output from the smallest reasonable input (for the lowest reasonable end value of the loop variable *j*) (basis)
- Then, we assume that the loop works correctly for j = 1...n (inductive hypothesis)
- Then we have to show that from the fact that the loop produces a correct result for *j*=1...*n*, it follows that it produces the correct result for *j* = *n* + 1(inductive step)

Strong Induction

We've been using weak induction

• Strong induction means

- Basis: show *S*(*k*)
- Hypothesis: assume S(j) holds for arbitrary $j \le n$
- Step: Show S(n + 1) follows
- Another variation:
 - Basis: show *S*(0), *S*(1)
 - Hypothesis: assume *S*(*n*) and *S*(*n*+1) are true
 - Step: show $(S(n) \cap S(n+1) \rightarrow S(n+2)$