
Big-O	Notation

What is the algorithm’s efficiency
� The	algorithm’s	efficiency is	a	function	of	the	number	
of	elements	to	be	processed.	The	general	format	is

f(n) =	efficiency

2

The basic concept
� When	comparing	two	different	algorithms	that	solve	
the	same	problem,	we	often	find	that	one	algorithm	is	
an	order	of	magnitude	more	efficient	than	the	other.

� If	the	efficiency	function	is	linear,
� This	means	that	the	algorithm	is	linear and	it	contains	
no	loops	or	recursions.	

� In	this	case,	the	algorithm’s	efficiency	depends	only	on	
the	speed	of	the	computer.

3

The basic concept
� If	the	algorithm	contains	loops or	recursions (any	
recursion	may	always	be	converted	to	a	loop),
� It	is	called	nonlinear.	
� In	this	case,	the	efficiency	function	strongly	and	
informally	depends	on	the	number	of	elements	to	be	
processed.

4

Linear Loops
� The	efficiency	depends	on	how	many	times	the	body	
of	the	loop	is	repeated.	In	a	linear	loop,	the	loop	
update	(the	controlling	variable)	either	adds	or	
subtracts.
� For	example:

for (i ß 0 step 1 to 1000)

the loop body

� Here	the	loop	body	is	repeated	1000 times
� The	efficiency	is	directly	proportional	to	the	number	of	
iteration,	it	is: f(n) = n

5

Logarithmic Loops
� In	a	logarithmic	loop,	the	controlling	variable	is	
multiplied	or	divided	in	each	iteration
� For	example:

Multiply loop
for (i ß 1 step × 2 to 1024)

the loop body

Divide loop

for (i ß 1024 step /2 down to 1)
the loop body

� For	the	logarithmic	loop	the	efficiency	is	determined	by	the	
following	formula:	f(n) = log n

6

Logarithmic Loops
� Analysis	of	multiply	and	divide	loops

7

Multiply Divide

iteration Value	of	i Iteration Value	of	i

1 1 1 1024

2 2 2 512

3 4 3 256

4 8 4 128

5 16 5 64

6 32 6 32

7 64 7 16

8 128 8 8

9 256 9 4

10 512 10 2
(exit) 1024 (exit) 1

Linear Logarithmic Nested Loop
� A	total	number	of	iterations	in	the	linear	logarithmic	
nested	loop is	equal	to	the	product	of	the	numbers	of	
iterations	for	the	external	and	inner	loops,	respectively
� For	example:

for (i ß 1 to 10)

for (j ß 1 step × 2 to 10)
the loop body

� The	outer	loop	updates	either	adds	or	subtracts,	while	the	
inner	loop	multiplies	or	divides	(10×log10 in our example)

� For	the	linear	logarithmic	nested	loop	the	efficiency	is	
determined	by	the	following	formula:	f(n) = n logn

8

Quadratic Nested Loop
� A	total	number	of	iterations	in	the	quadratic	nested	
loop is	equal	to	the	product	of	the	numbers	of	
iterations	for	the	external	and	inner	loops,	respectively
� For	example:

for (i ß 1 to 10)

for (j ß 1 to 10)
the loop body

� Both	loops	in	this	example	add	(10×10=100 in	our	example)
� For	the	quadratic	nested	loop	the	efficiency	is	determined	by	
the	following	formula:	f(n) = n2

9

Dependent Quadratic Nested Loop
� A	total	number	of	iterations	in	the	dependent	
quadratic	nested	loop is	equal	to	the	product	of	the	
numbers	of	iterations	for	the	external	and	inner	loops
� For	example:

for (i ß 1 to 10)

for (j ß i to 10)
the loop body

� The	number	of	iterations	of	the	inner	loop	depends	on	the	
outer	loop.	It	is	equal	to	the	sum	of	the	first	n members	of	an	
arithmetic	progression:	n(n+1)/2

� For	the	dependent	quadratic	nested	loop	the	efficiency	is	
determined	by	the	following	formula:	f(n) = n(n+1)/2

10

Big-O notation
� The	number	of	statements	executed	in	the	function	for	
n elements	of	data	is	a	function	of	the	number	of	
elements	expressed	as	f(n).

� Although	the	equation	derived	for	a	function	may	be	
complex,	a	dominant	factor in	the	equation	usually	
determines	the	order	of	magnitude	of	the	result.

� This	factor	is	a	big-O,	as	in	“on	the	order	of”.	It	is	
expressed	as	O(n) .

11

Big-O notation
� The	big-O	notation	can	be	derived	from	f(n) using	the	
following	steps:
� In	each	term	set	the	coefficient	of	the	term	to	1.
� Keep	the	largest	term	in	the	function	and	discard	the	
others.	Terms	are	ranked	from	lowest	to	highest:	
log n, n, n log n, n2, n3, … , nk, … , 2n, … , n!

12

nnnnnf
2
1

2
1

2
1)(2 +=÷
ø
ö

ç
è
æ +

= nn +2)()(2nOnf =

Measures of Efficiency
� n =	10,000

13

Efficiency Big-O Iterations Estimated	Time

Logarithmic O(log n) 14 Microseconds

Linear O(n) 10,000 Seconds

Linear	logarithmic O(n(log n)) 140,000 Seconds

Quadratic O(n2) 10,0002 Minutes

Polynomial O(nk) 10,000k Hours

Exponential O(cn) 210,000 Intractable

Factorial O(n!) 10,000! Intractable

Big-O	Notation	and	
Other	Bound	Notations

Insertion Sort 2nd algorithm
for jß 1 to length[A]-1

do

{ keyß A[j]

for iß j + 1 to length[A]

do

{ if A[j] > A[i]

then key ß A[j]

A[j] ß A[i]

}
A[i] ß key

} 15

Insertion Sort 2nd algorithm:
the worst case

for jß 1 to length[A]-1 c1n

do

{ keyß A[j] c2(n-1) » c2n

for iß j + 1 to length[A] ~c3(n2/2)

do

{ if A[j] > A[i] ~c4(n2/2)

then key ß A[j] ~c5(n2/2)

A[j] ß A[i] ~c6(n2/2)

}
A[i] ß key ~c7(n2/2)

} 16

Insertion Sort 2nd algorithm:
the worst case

� Thus	in	the	terms	of	Big-O	notation:

T(n) = an2 + bn » n2 + n

nccnccccc

ncccccncncnT

)(

)()(

21
276543

2

7654321

22222

2

++÷
ø
ö

ç
è
æ ++++=

=++++++=

()2()T n O n=

17

Growth of Functions:
Asymptotic Bound Notations
� That	algorithm	is	more	efficient	whose	efficiency	(as	a	
function	of	the	input	size)	growths slowly.

� Thus,	to	compare	the	efficiency	of	two	or	more	
different	algorithms	it	is	enough	to	compare	their	
efficiencies	in	terms	of	growth	of	functions

18

Growth of Functions:
Asymptotic Bound Notations
� We	say	that	in	terms	of	big-O	notation	the	sorting	
running	time	is	O(n2) for	any	of	those	3 sorting	
algorithms,	which	we	considered

� How	we	can	estimate	the	running	time	function	in	
terms	of	growth	of	functions	depending	on	the	input	
size	without	direct	estimation	of	the	cost	of	each	step	
of	an	algorithm	(the	cost	of	statement	in	the	
pseudocode description	of	an	algorithm	or	a	block	in	
the	flow	chart)?

19

Growth of Functions:
Asymptotic Bound Notations
� Let	f(n) be	a	running	time	function	(the	efficiency	
function)	whose	equation	is	unknown or	is	difficult	to	
evaluate (a	long	equation	containing	a	number	of	
additive	terms,	which	in	turn	contain	additive	and	
multiplicative	terms	where	a	problem	size	appears	
raised	in	different	degrees).

20

Growth of Functions:
Asymptotic Bound Notations
� If	it	is	possible	to	prove	that	f(n) behaves	similarly	to	
some	well	known function	g(n)
� For	example

� f(n) growths	not	faster	than	g(n)
� f(n) growths	not	slower	than	g(n)
� f(n) growths	as	quickly	as	g(n)

� then	we	can	evaluate	behavior	of	f(n) as	behavior	of	
g(n)

21

Big-O: Upper Bound Notation
� Let	f(n) be	a	running	time	function	(the	efficiency),	
which	we	have	to	evaluate.	

� In	general	a	function
� f(n) is	O(g(n)) if	there	exist	positive	constants	c and n0
such	that	f(n) £ c × g(n) for	all	n ³ n0

� Formally
� f(n) = O(g(n)) if		$ positive	constants	c and	n0 such	that	

"n ³ n0 : f(n) £ c × g(n)

22

Sorting is O(n2)
� f(n) = an2 + bn + cà f(n) = O(n2)
� Proof	

� We	have	to	find	such	c¢ and	n0 that	f(n) £ c¢×g(n) for	all	n
³ n0

� If	any	of		a,	b,	and	c are	less	than	0,	replace	the	constant	
with	its	absolute	value	
an2 + bn + c £ (a + b + c)n2 + (a + b + c)n + (a + b + c)

£ 3(a + b + c)n2 for n ³ 1
Let c¢ = 3(a + b + c) and let n0 = 1 à f(n) £ c¢n2

23

Big O Fact
� A	polynomial	of	degree	k is	O(nk)
� Proof

� Suppose	f(n) = bknk + bk-1nk-1 + … + b1n + b0
� Let	ai = |bi|

� f(n) £ aknk + ak-1nk-1 + … + a1n + a0 £

k
k

i
i

k
k

i
k

i

i
k cnan

n
nan £££ åå

== 00

24

Multiply	nk to	both	denominator	and	numerator

W(n): Lower Bound Notation
� Let	f(n) be	a	running	time	function	(the	efficiency),	
which	we	have	to	evaluate.	

� In	general	a	function
� f(n) is	W(g(n)) if	there	exist	positive	constants	c and n0
such	that	f(n) ³ c × g(n) ³ 0 for	all	n ³ n0

� Formally
� f(n) = W(g(n)) if		$ positive	constants	c and	n0 such	that	

"n ³ n0 : f(n) ³ c × g(n) ³ 0

25

W(n): Examples
� Example	1:

� Suppose	running	time	is	f(n)=an + b
� Assume	a and	b are	positive	(if	not,	we	may	replace	them	by	
their	absolute	values):
an + b ³ an à f(n) = W(n), c = a, n0 =1.

� Example	2:	Insertion	is	W(n2)
� f(n)= an2 + bn + c à an2 + bn + c ³ an2à

à c¢ = a; n0 =1 à f(n) ³ c¢n2

26

Q(n): Asymptotic Tight Bound
� A	function	f(n) is	Q(g(n)) if	$ positive	constants	c1,	c2
and	n0 such	that	

c1 g(n) £ f(n) £ c2 g(n), "n ³ n0

� Theorem
� For	any	two	functions	f(n) and	g(n),	we	have		f(n) =
Q(g(n)) if	and	only	if		f(n) = O(g(n)) and	f(n) = W(g(n)).

27

Q(n): Examples
� f(n) = an2 + bn + c, $a, b and c a > 0à f(n) = Q(n2)
� Proof

� Asymtotic upper bouund: an2 + bn + c = O(n2)
� Asymtotic lower bouund: an2 + bn + c = W(n2)

28

Graphic Examples of Q, O, and W
notations

n

f(n) = Q(g(n))

f(n)

c1g(n)

c2g(n)

n0
n

f(n) = O(g(n))

f(n)

cg(n)

n0 n

f(n) = W(g(n))

f(n)
cg(n)

n0

29

n0 :	the	minimum	possible	value

Other Asymptotic Notations
� A	function	f(n) is	o(g(n)) if	$ positive	constants	c and	
n0 such	that		

f(n)	<	c	× g(n),	"n ³ n0

We	tell	that	f(n) is	asymptotically	smaller	than	g(n)

� A	function	f(n) is	w(g(n)) if	$ positive	constants	c and	
n0 such	that		

c	× g(n)	<	f(n),	"n ³ n0

We	tell	that	f(n) is	asymptotically	larger	than	g(n)

30

Philosophical Sense

� f(n)	does	not	asymptotically	exceed	g(n) if	f(n)	=	O(g(n))

� f(n)	asymptotically	exceeds	g(n) if	f(n)	=	W(g(n))

� f(n) is	asymptotically	smaller	than g(n) if	f(n)	=	o(g(n))

� f(n) is	asymptotically	larger	than g(n) if	f(n)	=	w(g(n))

o()	is	like	< w()	is	like	>
O()	is	like	£ W()	is	like	³ Q()	is	like	=

31

Some properties
� Transitivity:

� f(n) =	Q(g(n)) and	g(n) = Q(h(n)) imply	f(n) =	Q(h(n))
� Same	is	true	for	O,	W,	o,	and	w

� Reflexivity:
� f(n) =	Q(f(n)),	same	is	true	for	O,	W,	o,	and	w

� Symmetry:
� f(n) =	Q(g(n)) if	and	only	if	g(n) =	Q(f(n))

� Transpose	symmetry:
� f(n) =	O(g(n)) if	and	only	if	g(n) =	W(f(n))
� f(n) =	o(g(n)) if	and	only	if	g(n) =		w(f(n))

32

Monotonicity
� f(n) is	monotonically	increasing

if	m £ n implies	f(m) £ f(n)
� f(n) is	monotonically	decreasing

if	m £ n implies	f(m) ³ f(n)
� f(n) is	strictly	increasing

if	m < n implies	f(m) < f(n)
� f(n) is	strictly	decreasing

if	m < n implies	f(m) > f(n)

34

Exponentials
� For	all	real	a > 0 ,	m,	and	n,	we	have	the	following	
identities:
� a0 = 1
� a1 = a
� a-1 = 1/a
� (am)n = amn

� (am)n = (an)m

� aman = am+n

35

Exponentials
� For	all	real	constants	a and	b such	that	a > 1:

from	which	we	can	conclude	that	nb = o(an)
� Any	exponential	function	(an)	with	a	base	strictly	greater	
than	1 grows	faster	than	any	polynomial	function	(nb)

� For	all	real	x:	ex ³ 1 + x
� As	x gets	closer	to	0,	ex gets	closer	to	1 + x
� Equality	holds	only	when	x = 0

36

lim
!→#

𝑛$

𝑎!
= 0

𝑒! = 1 + 𝑥 +
𝑥"

2! +
𝑥#

3! + ⋯ =*
$%&

'
𝑥$

𝑖!

Logarithms
� We	shall	use	the	following	notations:

� lg n = log2 n (binary	logarithm)
� ln n = loge n (natural	logarithm)
� lgk n = (lg n)k (exponentiation)
� lg lg n = lg(lg n) (composition)

37

Logarithms
� For	all	real	a > 0,	b > 0,	c > 0,	and	n

� a =
� logc(ab) = logc a + logc b
� logb an = n logb a

� logb a =

� logb(1/a) = -logb a

� logb a =

� =

abblog

b
a

b
a

c

c

ln
ln

log
log

=

balog
1

abc logcba log

where,	in	each	equation	above,	logarithm	bases	are	not	1.
38

Logarithms
� Base of	a	logarithm

� Changing	the	base	of	a	logarithm	from	one	constant	to	
another	only	changes	the	value	by	a	constant	factor,	so	
we	usually	don’t	worry	about	logarithm	bases	in	
asymptotic	notation.	

� Convention	is	to	use	lg (binary	logarithm),	unless	the	
base	actually	matters

39

Logarithms
� Polynomials	grow	more	slowly	than	exponentials:

� Logarithms	grow	more	slowly	than	polynomials	
(substituting		n® lg n, a® 2a)	

from	which	we	can	conclude	that	lgb n = o(na)
� For	any	constant	a > 0,	any	positive	polynomial	function	
grows	faster	than	any	polylogarithmic	function.

()nb
n

b

n
aon

a
n

=Þ=
¥®

0lim

0
2

==
¥®¥® a

b

nna

b

n n
nn lglim

)(
lglim lg

40

Floors and ceilings
� For	any	real	number	x:

� ëxû is	the	greatest	integer	less	than	or	equal	to	x
(“the	floor	of	x”)

� éxù is	the	least	integer	greater	than	or	equal	to	x
(“the	ceiling	of	x”)

� Both	functions	f(x) = ëxû and	f(x) = éxù are	
monotonically	increasing

� For	any	real	x:	x - 1 < ëxû £ x £ éxù < x + 1
� For	any	integer	n:	ën/2û + én/2ù = n

41

Practical Complexity

42

0

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n
f(n) = log(n)
f(n) = n log(n)
f(n) = n 2̂
f(n) = n 3̂
f(n) = 2 n̂

Practical Complexity

43

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n
f(n) = log(n)
f(n) = n log(n)
f(n) = n 2̂
f(n) = n 3̂
f(n) = 2 n̂

Practical Complexity

44

0

1000

1 3 5 7 9 11 13 15 17 19

f(n) = n
f(n) = log(n)
f(n) = n log(n)
f(n) = n 2̂
f(n) = n 3̂
f(n) = 2 n̂

Practical Complexity

45

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13 15 17 19

f(n) = n
f(n) = log(n)
f(n) = n log(n)
f(n) = n 2̂
f(n) = n 3̂
f(n) = 2 n̂

2n growths	faster	than	n3 starting	from	n=10

