
Revision Control

Dr. Hyrum Carroll

September 13, 2016
(Updated September 22, 2016)

Revision Control: Motivation
The typical problem

http://www.phdcomics.com/comics.php?n=1531

Does this look familiar?

-rw-r--r-- 1 usr1 Sep 19 16:53 simulation.f

-rw-r--r-- 1 usr1 Sep 19 16:53 #simulation.f#

-rw-r--r-- 1 usr1 Sep 19 14:38 simulation.f~

-rw-r--r-- 1 usr1 Sep 17 12:01 simulation.f.old

-rw-r--r-- 1 usr1 Feb 21 2014 simulation.f.bak

-rw-r--r-- 1 usr1 Sep 16 2014 simulation.f.orig

-rw-r--r-- 1 usr1 Dec 13 2010 simulation.f.from-BYU

Or maybe this?

-rw-r--r-- 1 usr1 Sep 19 16:53 simulation.f

-rw-r--r-- 1 usr1 Sep 17 12:01 simulation.f.2014.09.17

-rw-r--r-- 1 usr1 Feb 21 2010 simulation.f.2010.02.21

http://www.phdcomics.com/comics.php?n=1531

Possible Uses

I Source code projects (Python, Perl, Fortran, C, C++, bash,
MATLAB, etc.)

I Configuration files
I For code (e.g., Makefiles)
I Systems (e.g., .bashrc)
I security
I Web server (e.g., httpd.conf)

I Research projects
I Digital lab notebook
I Scripts
I Manuscripts

I Web documents (HTML, CSS, Javascript, etc)

Revision Control: History
Version Control System (VCS)

I Good for storing changes
I Stores notes about

changes
I Allows for displaying

differences of previous
versions

I Allows for checking out
previous versions

I E.g., RCS (1985)

Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)

Revision Control: History
Centralized Version Control Systems (CVCS)

I Good for storing changes
I Good for collaborating

I Allows for “branches” for
subprojects

I Automatically handles
simultaneous changes
(unless they conflict)

I E.g., CVS, Subversion
(SVN), and Perforce

Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)

Revision Control: History
Distributed Version Control Systems (DVCS)

I Good for storing changes

I Good for collaborating
I Mirror of repository

I Built to support querying
changes locally

I Every clone (local copy) is
a full version of all the
changes

I E.g., Git (, Mercurial,
Bazaar & Darcs)

Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)

Revision Control: History
Git

Git:

I Created by Linus Torvalds
(2005), the creator of Linux

I Goals:
I Speed
I Simple design
I Strong support for

non-linear development
(thousands of parallel
branches)

I Fully distributed
I Handle large projects

(e.g., the Linux kernel)
efficiently (speed and data
size)

Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)

Git

Git

Stream of snapshots:

Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)

Git

Three main sections:

Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)

Git

Initial Steps:

I git clone URL

or

I git init projectName

I cd projectName

Git

Basic Git workflow:

I Modify files (in working directory)

I Stage the files (which adds “snapshots” to your staging area)

I Commit (copies the “snapshot” from the staging area to your
Git directory (.git))

Basic Git workflow:

I git add . # add modified files to the staging area (from the
working directory)

I git commit -m "Message about changes" # add
modified files to local repository

I git pull # sync local repository with changes from the
remote repository

I git push # sync local repository with your changes to the
remote repository

Subversion (SVN)

Revision Control: Vocab
Basic Setup

I Repository (repo): The database storing the files.

I Server: The computer storing the repo.

I Client: The computer connecting to the repo.

I Working Copy: Your local directory of files, where you make
changes.

I Trunk/Main: The primary location for code in the repo.
Think of code as a family tree — the trunk is the main line.

(Source: betterexplained.com)

betterexplained.com

Revision Control: Vocab
Basic Actions

I Add: Put a file into the repo for the first time, i.e. begin
tracking it with Version Control.

I Revision: What version a file is on (v1, v2, v3, etc.).
I Check out: Download a file from the repo.
I Check in: Upload a file to the repository (if it has changed).

The file gets a new revision number, and people can “check
out” the latest one.

I Checkin Message: A short message describing what was
changed.

I Changelog/History: A list of changes made to a file since it
was created.

I Head: The latest revision in the repo.
I Update/Sync: Synchronize your files with the latest from the

repository. This lets you grab the latest revisions of all files.
I Revert: Throw away your local changes and reload the latest

version from the repository.

(Source: betterexplained.com)

betterexplained.com

Revision Control: Vocab
Advanced Actions

I Branch: Create a separate copy of a file/folder for private use
(bug fixing, testing, etc). (both a verb and a noun).

I Diff: Finding the differences between two files. Useful for
seeing what changed between revisions.

I Merge (or patch): Apply the changes from one file to another,
to bring it up-to-date.

I Conflict: When pending changes to a file contradict each
other (both changes cannot be applied).

I Resolve: Fixing the changes that contradict each other and
checking in the correct version.

I Locking: Taking control of a file so nobody else can edit it
until you unlock it. Some version control systems use this to
avoid conflicts.

I Breaking the lock: Forcibly unlocking a file so you can edit it.

(Source: betterexplained.com)

betterexplained.com

Revision Control

(Source: betterexplained.com)

betterexplained.com

Revision Control

(Source: betterexplained.com)

betterexplained.com

Revision Control

(Source: betterexplained.com)

betterexplained.com

Revision Control

(Source: betterexplained.com)

betterexplained.com

Revision Control

(Source: betterexplained.com)

betterexplained.com

Revision Control

(Source: betterexplained.com)

betterexplained.com

Revision Control

(Source: betterexplained.com)

betterexplained.com

SVN Setup Instructions

On the web server (i.e., ranger), in ~/public html/:

1. svnadmin create newProj

2. chmod 700 newProj/

3. cd newProj/conf/

4. echo ’[users]’ > passwd

5. echo ’user1’ = ToPsEcReT >> passwd

6. chmod go-rwx passwd

7. cp ~cs/public html/share/svnserve.conf .

either the above command or the next four

8. echo "[general]" > svnserve.conf

9. echo "anon-access = none" >> svnserve.conf

10. echo "auth-access = write" >> svnserve.conf

11. echo "password-db = passwd" >> svnserve.conf

SVN New Repository Instructions

On YOUR machine, (e.g., a laptop):

1. mkdir mortgageCalculator

2. mkdir mortgageCalculator/trunk/

3. emacs mortgageCalculator/trunk/assignment5.f90

4. emacs mortgageCalculator/trunk/Makefile

5. svn import --username user1 mortgageCalculator/ \
svn://svn.cs.mtsu.edu/$USER/public html/newProj \
-m "Initial import"

Authentication realm: <svn://svn.cs.mtsu.edu:3690> 22d56e8d-83bc-45bb-a694-6cee9563321d

Password for ’user1’:

Adding mortgageCalculator/trunk

Adding mortgageCalculator/trunk/assignment5.f90

Adding mortgageCalculator/trunk/Makefile

SVN Check Out Repository Instructions

On the YOUR machine, (e.g., a laptop):

1. svn checkout --username user1

svn://svn.cs.mtsu.edu/$USER/public html/newProj

A newProj/trunk

A newProj/trunk/assignment5.f90

A newProj/trunk/Makefile

Checked out revision 1.

