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Revision Control: Motivation

The typical problem

http://www.phdcomics.com/comics.php?n=1531

Does this look familiar?
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Or maybe this?
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Possible Uses

v

Source code projects (Python, Perl, Fortran, C, C++, bash,
MATLAB, etc.)

Configuration files

v

» For code (e.g., Makefiles)

» Systems (e.g., .bashrc)

> security

» Web server (e.g., httpd.conf)

v

Research projects

» Digital lab notebook
» Scripts
» Manuscripts

Web documents (HTML, CSS, Javascript, etc)

v



Revision Control: History
Version Control System (VCS)

» Good for storing changes

» Stores notes about
changes

» Allows for displaying
differences of previous
versions

» Allows for checking out
previous versions

> E.g., RCS (1985)

Checkout

Local Computer

Version Database

Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)

Version 2

Version 1




Revision Control: History
Centralized Version Control Systems (CVCS)

Central VCS Server

» Good for storing changes Computer A
» Good for collaborating - Yersion Database
> Allows for “branches” for Version 3
subprojects \

Version 2

» Automatically handles
simultaneous changes

(unless they conflict) m‘./// Version 1

Computer B ‘

» E.g., CVS, Subversion
(SVN), and Perforce

Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)



Revision Control: History
Distributed Version Control Systems (DVCS)

Server Computer

» Good for storing changes =
» Good for collaborating Version 3
» Mirror of repository Version 2
» Built to support querying Version 1
changes locally 2 %
> Every clone (local copy) is
a full version of all the y \
changes Computer A Computer B
» E.g., Git (, Mercurial, @ @
Bazaar & Darcs) ersion derabase e Version detabeee
Version 3 Version 3
Version 2 Version 2
Version 1 Version 1

Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)



Revision Control: History
Git
Git:
» Created by Linus Torvalds
(2005), the creator of Linux
> Goals:
» Speed
» Simple design
» Strong support for
non-linear development

(thousands Of para||e| Computer A

branches) m

Fully distributed
Handle large projects

Version Database

Version 3
(e.g., the Linux kernel) S
efficiently (speed and data

Version 1

size)
Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)

Server Computer
Version Database

Version 3
Version 2

Version 1

Computer B
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Git



Git

Stream of snapshots:

Checkins Over Time

File A Al A2
File B B ; B ; B1
File C c1 C2 ‘ C2 C3
Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License)



Git

Three main sections:
Working Staging
Directory Area

.git directory
(Repository)
Checkout

the project

Stage Fixes

Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)



Git

Initial Steps:
» git clone URL
or
> git init projectName

» cd projectName



Git
Basic Git workflow:
» Modify files (in working directory)
» Stage the files (which adds “snapshots” to your staging area)

» Commit (copies the “snapshot” from the staging area to your
Git directory (.git))

Basic Git workflow:

» git add . # add modified files to the staging area (from the
working directory)

> git commit -m "Message about changes" # add
modified files to local repository

» git pull # sync local repository with changes from the
remote repository

> git push # sync local repository with your changes to the
remote repository



Subversion (SVN)



Revision Control: Vocab
Basic Setup

» Repository (repo): The database storing the files.
» Server: The computer storing the repo.
» Client: The computer connecting to the repo.

» Working Copy: Your local directory of files, where you make
changes.

» Trunk/Main: The primary location for code in the repo.
Think of code as a family tree — the trunk is the main line.

(Source: betterexplained.com)


betterexplained.com

Revision Control: Vocab

Basic Actions

» Add: Put a file into the repo for the first time, i.e. begin
tracking it with Version Control.

» Revision: What version a file is on (v1, v2, v3, etc.).

» Check out: Download a file from the repo.

» Check in: Upload a file to the repository (if it has changed).
The file gets a new revision number, and people can “check
out” the latest one.

» Checkin Message: A short message describing what was
changed.

» Changelog/History: A list of changes made to a file since it
was created.

» Head: The latest revision in the repo.

» Update/Sync: Synchronize your files with the latest from the
repository. This lets you grab the latest revisions of all files.
> Revert: Throw away your local changes and reload the latest

version from the repository.

(Source: betterexplained.com)
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Revision Control: Vocab

Advanced Actions

>

>

Branch: Create a separate copy of a file/folder for private use
(bug fixing, testing, etc). (both a verb and a noun).

Diff: Finding the differences between two files. Useful for
seeing what changed between revisions.

Merge (or patch): Apply the changes from one file to another,
to bring it up-to-date.

Conflict: When pending changes to a file contradict each
other (both changes cannot be applied).

Resolve: Fixing the changes that contradict each other and
checking in the correct version.

Locking: Taking control of a file so nobody else can edit it
until you unlock it. Some version control systems use this to
avoid conflicts.

Breaking the lock: Forcibly unlocking a file so you can edit it.

(Source: betterexplained.com)
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Revision Control

Basic Checkins
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(Source: betterexplained.com)


betterexplained.com

Revision Control

Basic Diffs
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Revision Control

Checkout and Edit
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Revision Control

Conflicts
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Revision Control

Branching
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Revision Control

Merging
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Revision Control

Tagging
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SVN Setup Instructions

On the web server (i.e., ranger), in ~/public_html/:
1. svnadmin create newProj

chmod 700 newProj/

cd newProj/conf/

echo ’[users]’ > passwd

echo ’userl’ = ToPsEcReT >> passwd

chmod go-rwx passwd

No oA~ wDbd

cp “cs/public_html/share/svnserve.conf
either the above command or the next four

®

echo "[generall" > svnserve.conf

9. echo "anon-access = none" >> svnserve.conf

10. echo "auth-access write" >> svnserve.conf

11. echo "password-db = passwd" >> svnserve.conf



SVN New Repository Instructions

On YOUR machine, (e.g., a laptop):
1. mkdir mortgageCalculator
mkdir mortgageCalculator/trunk/
emacs mortgageCalculator/trunk/assignment5.£90

emacs mortgageCalculator/trunk/Makefile

o e e

svn import --username userl mortgageCalculator/ \
svn://svn.cs.mtsu.edu/$USER/public_html/newProj \
-m "Initial import"

Authentication realm: <svn://svn.cs.mtsu.edu:3690> 22d56e8«
Password for ’userl’:

Adding mortgageCalculator/trunk

Adding mortgageCalculator/trunk/assignment5.£90
Adding mortgageCalculator/trunk/Makefile



SVN Check Out Repository Instructions

On the YOUR machine, (e.g., a laptop):

1. svn checkout --username userl
svn://svn.cs.mtsu.edu/$USER/public_html/newProj

A newProj/trunk

A newProj/trunk/assignment5.£90
A newProj/trunk/Makefile
Checked out revision 1.



