Revision Control

Dr. Hyrum Carroll

September 13, 2016

(Updated September 22, 2016)

Revision Control: Motivation

The typical problem

http://www.phdcomics.com/comics.php?n=1531

Does this look familiar?

-rw-r--r-—— 1
-rw-r--r-- 1
-rw-r—-r-—— 1
-rw—r——r— 1
-rw-r--r-— 1
-rw-r--r—— 1
-rw-r--r—— 1

Or maybe this?

-rw-r--r—— 1
-rw-r--r-—— 1
-rw-r--r—— 1

usrl
usril
usrl
usril
usrl
usril
usril

usrl
usril
usrl

Sep
Sep
Sep
Sep
Feb
Sep
Dec

Sep
Sep
Feb

19
19
19
17
21
16
13

19
17
21

16:53
16:53
14:38
12:01
2014
2014
2010

16:53
12:01
2010

simulation.

f

#simulation.f#

simulation.
simulation.
simulation.
simulation.
simulation.

simulation.
simulation.
simulation.

£~
f.

f
f
f

old

.bak
.orig
.from-BYU

.2014.09.17
.2010.02.21

http://www.phdcomics.com/comics.php?n=1531

Possible Uses

v

Source code projects (Python, Perl, Fortran, C, C++, bash,
MATLAB, etc.)

Configuration files

v

» For code (e.g., Makefiles)

» Systems (e.g., .bashrc)

> security

» Web server (e.g., httpd.conf)

v

Research projects

» Digital lab notebook
» Scripts
» Manuscripts

Web documents (HTML, CSS, Javascript, etc)

v

Revision Control: History
Version Control System (VCS)

» Good for storing changes

» Stores notes about
changes

» Allows for displaying
differences of previous
versions

» Allows for checking out
previous versions

> E.g., RCS (1985)

Checkout

Local Computer

Version Database

Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)

Version 2

Version 1

Revision Control: History
Centralized Version Control Systems (CVCS)

Central VCS Server

» Good for storing changes Computer A
» Good for collaborating - Yersion Database
> Allows for “branches” for Version 3
subprojects \

Version 2

» Automatically handles
simultaneous changes

(unless they conflict) m‘./// Version 1

Computer B ‘

» E.g., CVS, Subversion
(SVN), and Perforce

Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)

Revision Control: History
Distributed Version Control Systems (DVCS)

Server Computer

» Good for storing changes =
» Good for collaborating Version 3
» Mirror of repository Version 2
» Built to support querying Version 1
changes locally 2 %
> Every clone (local copy) is
a full version of all the y \
changes Computer A Computer B
» E.g., Git (, Mercurial, @ @
Bazaar & Darcs) ersion derabase e Version detabeee
Version 3 Version 3
Version 2 Version 2
Version 1 Version 1

Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)

Revision Control: History
Git
Git:
» Created by Linus Torvalds
(2005), the creator of Linux
> Goals:
» Speed
» Simple design
» Strong support for
non-linear development

(thousands Of para||e| Computer A

branches) m

Fully distributed
Handle large projects

Version Database

Version 3
(e.g., the Linux kernel) S
efficiently (speed and data

Version 1

size)
Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)

Server Computer
Version Database

Version 3
Version 2

Version 1

Computer B

A

- > Version Database

Version 3
Version 2

Version 1

Git

Git

Stream of snapshots:

Checkins Over Time

File A Al A2
File B B ; B ; B1
File C c1 C2 ‘ C2 C3
Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License)

Git

Three main sections:
Working Staging
Directory Area

.git directory
(Repository)
Checkout

the project

Stage Fixes

Image source: Pro Git by Scott Chacon and Ben Straub (Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License)

Git

Initial Steps:
» git clone URL
or
> git init projectName

» cd projectName

Git
Basic Git workflow:
» Modify files (in working directory)
» Stage the files (which adds “snapshots” to your staging area)

» Commit (copies the “snapshot” from the staging area to your
Git directory (.git))

Basic Git workflow:

» git add . # add modified files to the staging area (from the
working directory)

> git commit -m "Message about changes" # add
modified files to local repository

» git pull # sync local repository with changes from the
remote repository

> git push # sync local repository with your changes to the
remote repository

Subversion (SVN)

Revision Control: Vocab
Basic Setup

» Repository (repo): The database storing the files.
» Server: The computer storing the repo.
» Client: The computer connecting to the repo.

» Working Copy: Your local directory of files, where you make
changes.

» Trunk/Main: The primary location for code in the repo.
Think of code as a family tree — the trunk is the main line.

(Source: betterexplained.com)

betterexplained.com

Revision Control: Vocab

Basic Actions

» Add: Put a file into the repo for the first time, i.e. begin
tracking it with Version Control.

» Revision: What version a file is on (v1, v2, v3, etc.).

» Check out: Download a file from the repo.

» Check in: Upload a file to the repository (if it has changed).
The file gets a new revision number, and people can “check
out” the latest one.

» Checkin Message: A short message describing what was
changed.

» Changelog/History: A list of changes made to a file since it
was created.

» Head: The latest revision in the repo.

» Update/Sync: Synchronize your files with the latest from the
repository. This lets you grab the latest revisions of all files.
> Revert: Throw away your local changes and reload the latest

version from the repository.

(Source: betterexplained.com)

betterexplained.com

Revision Control: Vocab

Advanced Actions

>

>

Branch: Create a separate copy of a file/folder for private use
(bug fixing, testing, etc). (both a verb and a noun).

Diff: Finding the differences between two files. Useful for
seeing what changed between revisions.

Merge (or patch): Apply the changes from one file to another,
to bring it up-to-date.

Conflict: When pending changes to a file contradict each
other (both changes cannot be applied).

Resolve: Fixing the changes that contradict each other and
checking in the correct version.

Locking: Taking control of a file so nobody else can edit it
until you unlock it. Some version control systems use this to
avoid conflicts.

Breaking the lock: Forcibly unlocking a file so you can edit it.

(Source: betterexplained.com)

betterexplained.com

Revision Control

Basic Checkins

f f f f I

Milk Milk Milk Milk
Eges Eges Eggs
Juice Soup

rl r2 r3 rd

(Source: betterexplained.com)

betterexplained.com

Revision Control

Basic Diffs

TR

Milk Milk Milk Milk
Eggs Eggs -Juice Eggs
e —{MPP Soup

rl r2 r3 rd

(Source: betterexplained.com)

betterexplained.com

Revision Control

Checkout and Edit

e

Milk Check Milk

Eggs eckout Eggs

Juice | — Soup

r3 rd
Milk

1 [Eggs 1T

L] P
. [&\\]1 Soup
Revert Checkin

Woarking Copy

(Caivivmme Tamdd e meramT e 2o T)

betterexplained.com

Revision Control

Conflicts

Walid Checkin

Milk
Eges r3* (Joe)
Juice Main Trunk

r3
"""—-—._._______ ‘Eggs
+Hot Dog Conflicting Checkin
Milk (Cannotremove eggs)
HotDog
Juice

r3* (Sue)

(Source: betterexplained.com)

betterexplained.com

Revision Control

Branching
Milk Milk
Eggs Eggs
Soup Soup
Rice

ré

New Features

Milk Milk
Eggs Eggs
Soup Soup
Bread
rd r7

(Source: betterexplained.com)

betterexplained.com

Revision Control

Merging

Milk Milk
Eggs . Eggs
Soup Soup

Rice

r6

New Features

Milk Milk ' Milk
Eggs Eggs = Eggs
Soup pBread Soup 4 Llice } * Soup
Bread Bread
Rice

rd r7 8

(Source: betterexplained.com)

betterexplained.com

Revision Control

Tagging

Milk Milk
Eggs Eggs
Soup Soup
Bread

rd r?

(Source: betterexplained.com)

Milk
Eggs
Soup
Bread
Rice

rg

betterexplained.com

SVN Setup Instructions

On the web server (i.e., ranger), in ~/public_html/:
1. svnadmin create newProj

chmod 700 newProj/

cd newProj/conf/

echo ’[users]’ > passwd

echo ’userl’ = ToPsEcReT >> passwd

chmod go-rwx passwd

No oA~ wDbd

cp “cs/public_html/share/svnserve.conf
either the above command or the next four

®

echo "[generall" > svnserve.conf

9. echo "anon-access = none" >> svnserve.conf

10. echo "auth-access write" >> svnserve.conf

11. echo "password-db = passwd" >> svnserve.conf

SVN New Repository Instructions

On YOUR machine, (e.g., a laptop):
1. mkdir mortgageCalculator
mkdir mortgageCalculator/trunk/
emacs mortgageCalculator/trunk/assignment5.£90

emacs mortgageCalculator/trunk/Makefile

o e e

svn import --username userl mortgageCalculator/ \
svn://svn.cs.mtsu.edu/$USER/public_html/newProj \
-m "Initial import"

Authentication realm: <svn://svn.cs.mtsu.edu:3690> 22d56e8«
Password for ’userl’:

Adding mortgageCalculator/trunk

Adding mortgageCalculator/trunk/assignment5.£90
Adding mortgageCalculator/trunk/Makefile

SVN Check Out Repository Instructions

On the YOUR machine, (e.g., a laptop):

1. svn checkout --username userl
svn://svn.cs.mtsu.edu/$USER/public_html/newProj

A newProj/trunk

A newProj/trunk/assignment5.£90
A newProj/trunk/Makefile
Checked out revision 1.

