
Pseudocode

Dr. Hyrum Carroll

September 15, 2016



Basic Steps in Routine Building

Design 
the 

routine

Check the 
routine

Code the 
routine

 Review & 
test the 
code

Begin

Done



Pseudocode - Program Design Language

I use English statements which describe specific operations

I avoid using programming syntax - keep the description at a
high enough level so you aren’t thinking in the language

I describe the meaning of the approach rather than the
implementation

I start with descriptions at a high level

I provide more details until you can immediately write code
from the pseudocode

Pseudocode is an optimal way to design routines.



Good vs Bad Pseudocode
I BAD

if (required_node_list(jnode) == 0) then

required_node_list(jnode) = 1

test the nodes location using if statements

and subdivide if needed

do i= 1, ndivnodes

do k = 1, nd(i)

nd(j++) = d(k)

I GOOD

mark the node as a "terminal node" if it

is not already a intermediate

subdivide the node if it is not

fully in the search region

loop through the divided nodes and

add their daughters to the next level list



Why use Pseudocode

I Pseudocode makes reviews easier

I Pseudocode supports iterative refinement (high-level design
− > pseudocode − > low-level source code)

I Pseudocode makes it easier to change design (catches errors
as early as possible)

I Pseudocode can be used as descriptive comments

I Pseudocode is easier to maintain than other forms of design
documentation

Pseudocode makes sense.



Pseudocode in Practice

I Use Pseudocode to design your routine

I Write Pseudocode using an editor as comments in your code.
Describe the meaning of approach, not implementation

I Check the Pseudocode and make sure it makes sense

I Refine the Pseudocode

I Write the code around the comments

I Check to makes sure the code is correct


