
Parallel Programming
OpenMP

Dr. Hyrum D. Carroll

November 22, 2016

Parallel Programming in a Nutshell

Load balancing vs Communication
This is the eternal problem in parallel computing. The basic
approaches to this problem include:

I Data partitioning - moving different parts of the data set
across several nodes

I Task partitioning - give separate tasks to different nodes

Definition of Terms

I node - a box usually containing processors, local memory,
disks and network connection

I cluster - a group of nodes networked together

I speedup: Sp = T1
Tp

I efficiency:
Sp
p = T1

pTp

(Ti is the execution time for i processors, p is the number of
processors)

Speedup

I Adding more processors does not always improve the speed a
code runs.

I Usually, better speedup can be found by increasing the
problem size, at least to a point.

I The non-parallel part of a code generally scales linearly with
the problem size. The parallel part usually scales as problem
size to some power.

I Generally increasing the problem size without increasing the
node number helps performance.

Scalability

Good parallel algorithms run faster when more nodes are available.
In the best case, doubling the number of nodes decreases the
execution time by a factor of two.
One way to consider scaling of a code is Amdahl’s law:

1

α + 1−α
p

where α is the portion of the code which cannot be parallelized
and p is the number of processors. This is a simplification, but-
Speedup is limited by the slowest portion of the code.

Amdahl’s Law

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Sp
ee

du
p

Number of Processors

linear
alpha: 0.01
alpha: 0.05
alpha: 0.10
alpha: 0.25
alpha: 0.50
alpha: 0.90

Communication

I Communication between nodes takes a great deal of time.

I Typically you can do thousands of computation in the time it
takes to pass the simplest message.

I The time it takes for a message to be passed is limited by
bandwidth b and latency l . To pass a message of size s, you
need

s

b
+ l

(Assuming b, l , and s are in consistent units.)

Introduction to OpenMP

OpenMP is as a set of simple program additions to make codes run
efficiently on shared memory computers. The formal API for
OpenMP is only about 50 pages long, and contains compiler
directives and library functions.

http://www.llnl.gov/computing/tutorials/openMP/

OpenMP Threads

OpenMP uses threads for parallel programming

I Forks and joins are used for most of the internal programming

I Speedup is achieved by the operating system splitting the
threads across multiple CPUs.

I New threads are created explicitly by the program directives
dynamically.

Forks and Joins

Goals of OpenMP - from LLNL

I Standardization

I Lean and Mean - only 3-4 directives

I Ease of use

I Portability - F77, F90, F95, C, C++

OpenMP Programming Model - from LLNL

I Shared Memory, thread based

I Explicit Parallelism

I Fork-Join Model

I Compiler Directives

I Nested Parallelism Support - in most implementations

I Dynamic Threads

I Not tied to I/O

Explicit Parallelism

I You must tell the computer what sections of code to
parallelize using complier directives.

I The compiler directives vary between languages, but are
ignored when OpenMP flags are not set with the compiler.

I Codes written with OpenMP can run easily on serial machines.

Environment and Library Routines

I Some environmental variables are needed to make the code
execute using the correct number of threads

I Some library routines allow the programmer to set and access
system variables

Not Message Passing

This is NOT a set of message passing routines. Instead, you give
directives to the compiler of what parts of the code can be
executed in parallel.
In some ways, OpenMP is a set of directives to tell the compiler
how to more efficiently handle loops.

General Syntax

Fortran:

!$OMP <directive>

do useful stuff

!$OMP end <directive>

C/C++:

#pragma omp <directive-name> clause

{

do useful stuff in a structured block

}

A Trivial Example

Basic Code

1 program t r i v i a l
2 p r i n t ∗ , ’ H e l l o World ! ’
3 end program

% gfortran trivial.f90

% ./a.out

Hello World!
OMP Additions

1 program t r i v i a l
2

3 !$OMP PARALLEL
4 p r i n t ∗ , ’ H e l l o World ! ’
5 !$OMP END PARALLEL
6

7 end program t r i v i a l

% gfortran trivialOpenMP.f90

% ./a.out

Hello World!

What went wrong?

A Trivial Example

Basic Code

1 program t r i v i a l
2 p r i n t ∗ , ’ H e l l o World ! ’
3 end program

% gfortran trivial.f90

% ./a.out

Hello World!
OMP Additions

1 program t r i v i a l
2

3 !$OMP PARALLEL
4 p r i n t ∗ , ’ H e l l o World ! ’
5 !$OMP END PARALLEL
6

7 end program t r i v i a l

% gfortran trivialOpenMP.f90

% ./a.out

Hello World!

What went wrong?

Execution of the Trivial Example

% gfortran trivialOpenMP.f90 -fopenmp

% ./a.out

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

% export OMP_NUM_THREADS=3

% ./a.out

Hello World!

Hello World!

Hello World!

Thread ID

1 program t r i v i a l 1
2 i m p l i c i t none
3 i n t e g e r : : OMP GET THREAD NUM, OMP GET MAX THREADS
4 i n t e g e r : : t i d , n t h r e ad s
5 !$OMP PARALLEL PRIVATE(nth reads , t i d)
6 t i d = OMP GET THREAD NUM()
7 n th r e ad s = OMP GET MAX THREADS()
8 p r i n t ∗ , ’ H e l l o World ! from ’ , t i d , n t h r e ad s
9 !$OMP END PARALLEL

10 end program

Note the PRIVATE key word, indicating that all threads have their
own copy of the variable.

Thread ID (2)

% gfortran -fopenmp trivial1.f90

% ./a.out

Hello World! from 0 1

Hello World! from 2 1

Hello World! from 3 1

Hello World! from 4 1

Hello World! from 1 1

Hello World! from 7 1

Hello World! from 5 1

Hello World! from 6 1

Thread ID

1 program t r i v i a l 2
2 i m p l i c i t none
3 i n t e g e r : : OMP GET THREAD NUM, OMP GET MAX THREADS
4 i n t e g e r : : t i d , n t h r e ad s
5 n th r e ad s = OMP GET MAX THREADS()
6 !$OMP PARALLEL PRIVATE(t i d)
7 t i d = OMP GET THREAD NUM()
8 p r i n t ∗ , ’ H e l l o World ! from ’ , t i d , n t h r e ad s
9 !$OMP END PARALLEL

10 end program

Note that nthreads is outside of the OMP directives

Thread ID (2)

% gfortran -fopenmp trivial2.f90

% ./a.out

Hello World! from 5 8

Hello World! from 0 8

Hello World! from 1 8

Hello World! from 2 8

Hello World! from 7 8

Hello World! from 3 8

Hello World! from 4 8

Hello World! from 6 8

Parallelizing Loops

To parallelize a loop, you need to help the compiler figure out the
most efficient way to use threads. There are simple defaults, but
giving it more details can help efficiency.
The basic directives are:

!$OMP PARALLEL

!$OMP DO

some parallel loop

!$OMP END DO

!$OMP END PARALLEL

A Simple OMP Example
omptest1

1 program omptest1
2 i n t e g e r , paramete r : : n = 10000
3 i n t e g e r , paramete r : : db l e = s e l e c t e d r e a l k i n d

(15 ,307)
4 r e a l (k i nd=db l e) , d imens ion (n) : : a
5 i n t e g e r : : i , j
6 !$OMP PARALLEL
7 !$OMP DO
8 do j = 1 , 100000
9 do i = 1 , n

10 a (i) = l og (r e a l (i)) + j
11 enddo
12 enddo
13 !$OMP END DO
14 !$OMP END PARALLEL
15 p r i n t ∗ , a (1)
16 end program omptest1

Results
omptest1

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 1 2 3 4 5 6 7 8

Se
co

nd
s

OMP_NUM_THREADS

real

Results
omptest1

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 1 2 3 4 5 6 7 8

Se
co

nd
s

OMP_NUM_THREADS

real
user

Results
omptest1

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 3 4 5 6 7 8

Sp
ee

du
p

OMP_NUM_THREADS

ideal

Results
omptest1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

Ef
fic

ie
nc

y

OMP_NUM_THREADS

Combining Directives

You do not have to have a separate directive on each line. For
example,

!$OMP PARALLEL

!$OMP DO

!$OMP PRIVATE(NTHREADS, TID)

Becomes

!$OMP PARALLEL DO PRIVATE(NTHREADS, TID)

Numerical Integration

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

-0.4 -0.2 0 0.2 0.4

y

x

4/(1+x**2)

Numerical Integration

Integrating

π =

∫ 1/2

−1/2

4

1 + x2
dx (1)

We can approximate this integral using Simpson’s algorithms

I Input the number of partitions to be used

I Divide the domain into n partitions

I Evaluate the function at each partition

I Multiply the function evaluation times the width of the
function to find a differential area

I Add the differential areas together

I Output the result

Parallel Integration

In parallel, the problem is nearly the same.

I Have processing element (PE) zero, get the number of
partitions, n

I Determine the number of PEs: m

I Divide the domain into n
m partitions on each PE

I Evaluate the function at each partition

I Multiply the function evaluation times the width of the
function to find a differential area

I Add the differential areas together across all the PEs

I On PE zero, output the result

Simple Code to Calculate PI

1 program reduce
2 i n t e g e r : : i , num steps
3 doub l e p r e c i s i o n : : x , p i , s tep , sum
4 sum =0.0d0 ; n s t e p s = 10000
5 s t ep = 1 .0 d0 / db l e (n s t e p s)
6 do i = 1 , n s t e p s
7 x = (db l e (i) + 0 .5 d0) ∗ s t ep
8 sum = sum + 4.0 d0 / (1 . 0 d0 + x∗x)
9 enddo

10 p i = s t ep ∗ sum
11 p r i n t ∗ , ” Es t imate o f Pi w i th ” , ns teps , ” s t e p s i s ”

, p i
12 end program reduce

$./reduce

Estimate of Pi with 10000 steps is 3.1413926444243838

Simple Code to Calculate PI
1 program reduceOMP
2 i n t e g e r : : i , num steps
3 doub l e p r e c i s i o n : : x , p i , s tep , sum
4 sum =0.0d0 ; num steps = 10000
5 s t ep = 1 .0 d0 / db l e (num steps)
6 !$OMP PARALLEL DO
7 do i = 1 , num steps
8 x = (db l e (i) + 0 .5 d0) ∗ s t ep
9 sum = sum + 4.0 d0 / (1 . 0 d0 + x∗x)

10 enddo
11 !$OMP END PARALLEL DO
12 p i = s t ep ∗ sum
13 p r i n t ∗ , ” Es t imate o f Pi w i th ” , num steps , ” s t e p s

i s ” , p i
14 end program reduceOMP

$ gfortran -fopenmp reduceOMP.f90 -o reduceOMP

$./reduceOMP

Estimate of Pi with 10000 steps is 7.5588335781770253

What happened?

Simple Code to Calculate PI
1 program reduceOMP
2 i n t e g e r : : i , num steps
3 doub l e p r e c i s i o n : : x , p i , s tep , sum
4 sum =0.0d0 ; num steps = 10000
5 s t ep = 1 .0 d0 / db l e (num steps)
6 !$OMP PARALLEL DO
7 do i = 1 , num steps
8 x = (db l e (i) + 0 .5 d0) ∗ s t ep
9 sum = sum + 4.0 d0 / (1 . 0 d0 + x∗x)

10 enddo
11 !$OMP END PARALLEL DO
12 p i = s t ep ∗ sum
13 p r i n t ∗ , ” Es t imate o f Pi w i th ” , num steps , ” s t e p s

i s ” , p i
14 end program reduceOMP

$ gfortran -fopenmp reduceOMP.f90 -o reduceOMP

$./reduceOMP

Estimate of Pi with 10000 steps is 7.5588335781770253

What happened?

Reductions

Because the loops are executing separately, you may wish to
combine the results from different threads to a final answer. You
need to use reduction to make this work.

$!OMP PARALLEL PRIVATE(X) REDUCTION(+:SUM)

OpenMP Modifications

1 program reduceOMP2
2 i n t e g e r : : i , num steps
3 doub l e p r e c i s i o n : : x , p i , s tep , sum
4 sum =0.0d0 ; n s t e p s = 100000000
5 s t ep = 1 .0 d0 / db l e (n s t e p s)
6 !$OMP PARALLEL DO PRIVATE(X) REDUCTION(+:SUM)
7 do i = 1 , n s t e p s
8 x = (db l e (i) + 0 .5 d0) ∗ s t ep
9 sum = sum + 4.0 d0 / (1 . 0 d0 + x∗x)

10 enddo
11 !$OMP END PARALLEL DO
12 p i = s t ep ∗ sum
13 p r i n t ∗ , ” Es t imate o f Pi w i th ” , ns teps , ” s t e p s i s ”

, p i
14 end program reduceOMP2

$ gfortran -fopenmp reduceOMP2.f90 -o reduceOMP2

$./reduceOMP2

Estimate of Pi with 10000 steps is 3.1413926444243732

Results
reduceOMP2

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

Se
co

nd
s

OMP_NUM_THREADS

real

Results
reduceOMP2

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

Se
co

nd
s

OMP_NUM_THREADS

real
user

Results
reduceOMP2

 0
 2
 4
 6
 8

 10
 12
 14
 16

 2 4 6 8 10 12 14 16

Sp
ee

du
p

OMP_NUM_THREADS

ideal

Results
reduceOMP2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

Ef
fic

ie
nc

y

OMP_NUM_THREADS

Loop Splitting

One of the key ideas to remember is that loops often contain
several operations that can be split. Taking an example from the
Patterns in Parallel Programming book, imagine we have a loop
with two functions:

I BIG COMPUTATION - a big computation the executes
independently on each element in the loop

I COMBINE - an element that cannot be parallelized and must
execute in order

Loop Splitting

do i = 1, nsteps

x = BIG_COMPUTATION(i)

call COMBINE(x,answer)

enddo

can be split into

do i = 1, nsteps

x(i) = BIG_COMPUTATION(i)

enddo

do i = 1, nsteps

call COMBINE(x(i),answer)

enddo

Using OpenMP in Loop Splitting

!$OMP PARALLEL DO PRIVATE(I)

do i = 1, nsteps

x(i) = BIG_COMPUTATION(i)

enddo

!$OMP END PARALLEL DO

do i = 1, nsteps

call COMBINE(x(i),answer)

enddo

Controlling Loops

There are many options for controlling the execution of threads.

!$OMP DO SCHEDULE(TYPE,integer)

I schedule(static[,chunk]) - groups of size chunk statically
assigned in a round-robin fashion

I schedule(dynamic[,chunk]) - threads dynamically grab work as
it is completed

I schedule(guided[,chunk]) - chunk size is reduced automatically
during iteration toward a minimum level of chunk

I schedule(runtime) - checks the OMP SCHEDULE
environmental variable

Controlling Loops

integer, parameter :: chunk = 10

!$OMP PARALLEL PRIVATE(i,j,z,c,it) DEFAULT(SHARED)

!$OMP DO SCHEDULE(DYNAMIC,CHUNK)

do i = 1, n

do j = 1, n

...

Controlling Loops

setenv OMP_SCHEDULE static

11.477u 0.012s 0:08.24 139.3%

setenv OMP_SCHEDULE dynamic

11.239u 0.006s 0:05.67 198.0%

setenv OMP_SCHEDULE guided

11.453u 0.005s 0:06.52 175.6%

setenv OMP_SCHEDULE static,20

11.439u 0.028s 0:05.89 194.3%

no omp

11.280u 0.004s 0:11.28 100.0%

