
Numerical Libraries
Scientific Computing Sections 2.8, 3.8

Dr. Hyrum D. Carroll

October 4, 2016

Numerical Libraries

I People have devoted their lives to making efficient routines to
solve

Ax = b

I The result of their work is a set of numerical libraries that can
be used your program

I Often, there are versions in C, C++, Fortran, Java and other
languages

Netlib

I One of the best sources for numerical libraries is
http://netlib.org

I 600 million accesses to their website

I A good place to start and find example, codes,
documentation, and libraries

I Most libraries have pre-compiled binaries that are available for
common platforms

http://netlib.org

Using New Libraries
Pedagogical Philosophy

I If you give a man a fish, he eats for a day

I If you teach him how to fish, he has food for his life

I If you slap a man with a fish, he will be very, very confused.
(Dr. John Wallin)

I I cannot teach you how to use 100 functions from each of
1000 libraries

I Instead, I will focus on how you can learn and use new library
functions

Using New Libraries

I Try the examples from on-line sources

I Create a simple problem where you know the solution
I Prototype your solution in Matlab or Octave

I Get your algorithm working BEFORE you worry about libraries
and syntax

I Write the real code

I Debug it using the Matlab/Octave solution as your guide

I we would like a robust but standard routine - at least for now

I double precision

I appropriate for least squares

DGELS

Try Some Example Codes
Lapack Example from NAG

! DGELS Example Program Text

! NAG Copyright 2005.

! .. Parameters ..

integer, parameter :: kdble = selected_real_kind(15,307)

integer, parameter :: MMAX=16 ,NB=64 ,NMAX=8

integer, parameter :: LDA=MMAX, LWORK=NMAX+NB*MMAX

! .. Local Scalars ..

real (kind=kdble) :: RNORM

integer I, INFO, J, M, N

! .. Local Arrays ..

real (kind=kdble) :: A(LDA,NMAX), B(MMAX), WORK(LWORK)

.

.

.

Sample Input Data

DGELS Example Program Data

6 4 :Values of M and N

-0.57 -1.28 -0.39 0.25

-1.93 1.08 -0.31 -2.14

2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08

0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 :End of matrix A

-2.67

-0.55

3.34

-0.77

0.48

4.10 :End of vector b

Sample Input Data

−0.57 −1.28 −0.39 0.25
−1.93 1.08 −0.31 −2.14

2.30 0.24 0.40 −0.35
−1.93 0.64 −0.66 0.08

0.15 0.30 0.15 −2.13
−0.02 1.03 −1.43 0.50

x1
x2
x3
x4

 =

−2.67
−0.55

3.34
−0.77

0.48
4.10

Octave Solution

A =[-0.57 -1.28 -0.39 0.25;

-1.93 1.08 -0.31 -2.14 ;

2.30 0.24 0.40 -0.35 ;

-1.93 0.64 -0.66 0.08 ;

0.15 0.30 0.15 -2.13 ;

-0.02 1.03 -1.43 0.50]

b = [-2.67 -0.55 3.34 -0.77 0.48 4.10] ’

x = A \ b

x =

1.533874

1.870748

-1.524070

0.039183

Sample Results

DGELS Example Program Results

Least squares solution

1.5339 1.8707 -1.5241 0.0392

Square root of the residual sum of squares

2.22E-02

Comments

I We do NOT need to use a square matrix

I We do NOT need to use the Normal equations method

Linking to Libraries

After the library is installed, you need to link to it

gfortran example.f90 -llapack

This will link to a library file name ”liblapack.a” or ”liblapack.so”.
(On the Mac, this is actually ”liblapack.dyn”.)

Sometimes you will need to specify the subdirectory where the
library is found

gfortran example.f90 -L/usr/lib -llapack

The ”-L” tells the compiler to look in the /usr/lib directory

Prototyping a Known Solution
Generating Data in Octave

n = 4;

m = 25;

a1 = 0.3e0;

a2 = -2.0e0;

a3 = 0.05e0;

a4 = -0.75e0;

for i = 1:m

x(i) = i/10.0e0;

y(i) = a1 + a2*x(i) + a3*x(i)**2 + a4*x(i)**3;

end

Solving the Problem in Octave

a = zeros(m,n);

for i = 1:m

a(i, 1) = 1;

a(i, 2) = x(i);

a(i, 3) = x(i)**2;

a(i, 4) = x(i)**3;

end

b = y;

sol = a\b’;

sol(1:4)

The Solution
Does this make sense?

> sol(1:4)

ans =

0.300000

-2.000000

0.050000

-0.750000

>

Solutions

I makedata.f90

I linsq2.f90

Prototype Normal Equations Method

clear a, b;

a = zeros(n,n);

for col = 1: n

for row = 1:n

for i = 1:m

a(col, row) = a(col, row) + x(i)**(col-1) * x(i)**(row-1);

end

end

end

Prototype Normal Equations Method

b = zeros(1,n);

for row = 1: n

for i = 1:m

b(row) = b(row) + y(i) * x(i)**(row-1);

end

end

soln = a\b’

Prototype - Normal Equations Method

> soln = a\b’

soln =

0.300000

-2.000000

0.050000

-0.750000

I Octave

a = zeros(n,n);

for col = 1: n

for row = 1:n

for i = 1:m

a(col, row) = a(col, row) + x(i)**(col-1) * x(i)**(row-1);

end

end

end

I Fortran

a = 0.0d0

do col = 1, n

do row = 1,n

do i = 1,m

a(col, row) = a(col, row) + x(i)**(col-1) * x(i)**(row-1);

enddo

enddo

enddo

I Octave

soln = a\b’

I Fortran

call DGELS(’No transpose’, n, n, 1, A, LDA, &

b, n, WORK, LWORK, INFO)

