Numerical Libraries
Scientific Computing Sections 2.8, 3.8

Dr. Hyrum D. Carroll

October 4, 2016
Numerical Libraries

- People have devoted their lives to making efficient routines to solve

\[Ax = b \]

- The result of their work is a set of numerical libraries that can be used for your program

- Often, there are versions in C, C++, Fortran, Java and other languages
Netlib

- One of the best sources for numerical libraries is http://netlib.org
- 600 million accesses to their website
- A good place to start and find example, codes, documentation, and libraries
- Most libraries have pre-compiled binaries that are available for common platforms
Using New Libraries
Pedagogical Philosophy

- If you give a man a fish, he eats for a day
- If you teach him how to fish, he has food for his life
- If you slap a man with a fish, he will be very, very confused. (Dr. John Wallin)

- I cannot teach you how to use 100 functions from each of 1000 libraries
- Instead, I will focus on how you can learn and use new library functions
Using New Libraries

- Try the examples from on-line sources
- Create a simple problem where you know the solution
- Prototype your solution in Matlab or Octave
 - *Get your algorithm working BEFORE you worry about libraries and syntax*
- Write the real code
- Debug it using the Matlab/Octave solution as your guide
we would like a robust but standard routine - at least for now
to double precision
appropriate for least squares

DGELS
Try Some Example Codes
Lapack Example from NAG

! DGELS Example Program Text
! NAG Copyright 2005.
! .. Parameters ..

integer, parameter :: kdbl = selected_real_kind(15,307)

integer, parameter :: MMAX=16 ,NB=64 ,NMAX=8
integer, parameter :: LDA=MMAX, LWORK=NMAX+NB*MMAX

! .. Local Scalars ..
real (kind=kdbl) :: RNORM
integer I, INFO, J, M, N
! .. Local Arrays ..
real (kind=kdbl) :: A(LDA,NMAX), B(MMAX), WORK(LWORK)
DGELS Example Program Data

6 4 :Values of M and N

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
 2.30 0.24 0.40 -0.35
-1.93 0.64 -0.66 0.08
 0.15 0.30 0.15 -2.13
-0.02 1.03 -1.43 0.50 :End of matrix A

-2.67
-0.55
 3.34
-0.77
 0.48
 4.10 :End of vector b
Sample Input Data

\[
\begin{bmatrix}
-0.57 & -1.28 & -0.39 & 0.25 \\
-1.93 & 1.08 & -0.31 & -2.14 \\
2.30 & 0.24 & 0.40 & -0.35 \\
-1.93 & 0.64 & -0.66 & 0.08 \\
0.15 & 0.30 & 0.15 & -2.13 \\
-0.02 & 1.03 & -1.43 & 0.50 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}
=
\begin{bmatrix}
-2.67 \\
-0.55 \\
3.34 \\
-0.77 \\
0.48 \\
4.10
\end{bmatrix}
\]
Octave Solution

\[
A = \begin{bmatrix}
-0.57 & -1.28 & -0.39 & 0.25 \\
-1.93 & 1.08 & -0.31 & -2.14 \\
2.30 & 0.24 & 0.40 & -0.35 \\
-1.93 & 0.64 & -0.66 & 0.08 \\
0.15 & 0.30 & 0.15 & -2.13 \\
-0.02 & 1.03 & -1.43 & 0.50
\end{bmatrix}
\]

\[
b = \begin{bmatrix}
-2.67 \\
-0.55 \\
3.34 \\
-0.77 \\
0.48 \\
4.10
\end{bmatrix}
\]

\[
x = A \backslash b
\]

\[
x =
\begin{bmatrix}
1.533874 \\
1.870748 \\
-1.524070 \\
0.039183
\end{bmatrix}
\]
DGELS Example Program Results

Least squares solution
1.5339 1.8707 -1.5241 0.0392

Square root of the residual sum of squares
2.22E-02
Comments

- We do NOT need to use a square matrix
- We do NOT need to use the Normal equations method
Linking to Libraries

After the library is installed, you need to link to it

gfortran example.f90 -llapack

This will link to a library file name "liblapack.a" or "liblapack.so". (On the Mac, this is actually "liblapack.dyn".)

Sometimes you will need to specify the subdirectory where the library is found

gfortran example.f90 -L/usr/lib -llapack

The "-L" tells the compiler to look in the /usr/lib directory
Prototyping a Known Solution
Generating Data in Octave

\[n = 4; \]
\[m = 25; \]
\[a1 = 0.3e0; \]
\[a2 = -2.0e0; \]
\[a3 = 0.05e0; \]
\[a4 = -0.75e0; \]

for i = 1:m
 \[x(i) = i/10.0e0; \]
 \[y(i) = a1 + a2*x(i) + a3*x(i)^2 + a4*x(i)^3; \]
end
Solving the Problem in Octave

```octave
a = zeros(m,n);
for i = 1:m
    a(i, 1) = 1;
    a(i, 2) = x(i);
    a(i, 3) = x(i)**2;
    a(i, 4) = x(i)**3;
end

b = y;
sol = a\b';
sol(1:4)
```
The Solution
Does this make sense?

> sol(1:4)

ans =

0.300000
-2.000000
0.050000
-0.750000

>
Solutions

- makedata.f90
- linsq2.f90
clear a, b;
a = zeros(n,n);
for col = 1: n
 for row = 1:n
 for i = 1:m
 a(col, row) = a(col, row) + x(i)**(col-1) * x(i)**(row-1);
 end
 end
end
Prototype Normal Equations Method

\[b = \text{zeros}(1,n); \]
\[\text{for } \text{row} = 1: n \]
\[\quad \text{for } i = 1:m \]
\[\quad \quad b(\text{row}) = b(\text{row}) + y(i) * x(i)^{\text{row}-1}; \]
\[\quad \text{end} \]
\[\text{end} \]

soln = a\b'

Prototype - Normal Equations Method

\[> \text{sln} = a\backslash b' \]
\[\text{sln} = \]

\[\begin{align*}
0.300000 \\
-2.000000 \\
0.050000 \\
-0.750000
\end{align*} \]
Octave

```octave
a = zeros(n,n);
for col = 1: n
    for row = 1:n
        for i = 1:m
            a(col, row) = a(col, row) + x(i)**(col-1) * x(i)**(row-1);
        end
    end
end
```

Fortran

```fortran
a = 0.0d0
do col = 1, n
    do row = 1,n
        do i = 1,m
            a(col, row) = a(col, row) + x(i)**(col-1) * x(i)**(row-1);
        enddo
    enddo
enddo
```
- **Octave**

  ```octave
  soln = a\b'
  ```

- **Fortran**

  ```fortran
  call DGELS('No transpose', n, n, 1, A, LDA, &
  b, n, WORK, LWORK, INFO)
  ```