= 7. NETWORK FLow |

PEARSON

e
Addison
Wesley

» max-flow and min-cut problems
» Ford—Fulkerson algorithm

» max-flow min-cut theorem

» capacity-scaling algorithm

» shortest augmenting paths

\‘\\ JON"KLEINBERG - EVA TAR'D“OS » Dinitz’ algorithm
» simple unit-capacity networks

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 10/29/24 3:32PM

http://www.cs.princeton.edu/~wayne/kleinberg-tardos
http://www.cs.princeton.edu/~wayne/kleinberg-tardos
http://www.cs.princeton.edu/~wayne

7. NETWORK FLOw |

» max-flow and min-cut problems

: Alg i Design
r\ JON KLEINBERG - EVA TARDOS

SECTION 7.1

Flow network

A flow network is a tuple G=(V, E, s,t, c).
* Digraph (V, E) with source s €V and sinkr € V.
* Capacity c(e) = 0 for each e € E. \

assume all nodes are reachable from s

Intuition. Material flowing through a transportation network;
material originates at source and is sent to sink.

Minimum-cut problem

Def. An sr-cut (cut) is a partition (A, B) of the nodes with s& A and r € B.

Def. lts capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e)

e
< - f

N\

capacity =10+ 5 + 15 =3C<>

Minimum-cut problem

Def. An sr-cut (cut) is a partition (A, B) of the nodes with s& A and r € B.

Def. lts capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e)

\ don’t include edges

from Bto A

capacity =10+ 8 + 16 =34©

Minimum-cut problem

Def. An sr-cut (cut) is a partition (A, B) of the nodes with s& A and r € B.

Def. lts capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e)

e out of A

Min-cut problem. Find a cut of minimum capacity.

capacity=10+8+10=28(> 6 "

Network flow: quiz 1

Which is the capacity of the given st-cut?

A.
B.
C.
D.

11 20+25-8—11-9-6)

34 (8+11+9+6)
45 (20 + 25)

79 20+25+8+11+9+6)

0 -

capacity

o —@

10

25

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 < fle) < cle) [capacity]
» ForeachveV-{s,1}: >, fle) = > fle) [flow conservation]
e in to v e out of v
flow capacity
inflowatv = 5+5+0 =10
\5/9 outflowatv = 10+0 =10
\0\»\0 S, s 0/15 S 7

s 5/5 — 5 /G —)?— 10/10 == ¢

10/16

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 < fle) < cle) [capacity]
» ForeachveV-{s,1}: >, fle) = > fle) [flow conservation]
e in to v e out of v

Def. Thevalue of aflowfis: wal(f) = Y fle) — Y f(e)

e out of s e in to s
5/9
Q S S
N\ / -
\ 7 7,
yd \Q S 0
G< 5/5 m=—p 5/8 10/10 @
7, Q
o QV‘
S N

7
value=5+10+10=@ \

10/16

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:
* Foreache€E: 0 < fle) < cle) [capacity]
» ForeachveV-{s,1}: >, fle) = > fle) [flow conservation]

e in to v e out of v

Def. Thevalue of aflowfis: wal(f) = Y fle) — Y f(e)

e out of s e in to s

Max-flow problem. Find a flow of maximum value.

8/9
Q 2 S
N /
\ 7 ps
/ :] ’
G< 5/5 8/8 10/10 @

b R

S k) \

7
value=10+5+13= \

13/16

10

7. NETWORK FLOw |

» Ford—Fulkerson algorithm

: Alg i Design
r\ JON KLEINBERG - EVA TARDOS

SECTION 7.1

Toward a max-flow algorithm

Greedy algorithm.

 Start with f(e) = 0 for each edge ¢ E E.

flow network G and flow f

@ 0/10

@

0/2

O

flow capacity

N/
0/4 Q

o, 0/6 -~

value of flow

/
(1) o

12

Toward a max-flow algorithm

Greedy algorithm.

* Find an s~ path P where each edge has f(e) < c(e).

flow network G and flow f

T

13

Toward a max-flow algorithm

Greedy algorithm.

* Augment flow along path P.

flow network G and flow f

0/10 Q

0/4

14

Toward a max-flow algorithm

Greedy algorithm.

* Repeat until you get stuck.

flow network G and flow f

0/4

2
0/10 (F-e-/g q

0/6

15

Toward a max-flow algorithm

Greedy algorithm.

* Repeat until you get stuck.

flow network G and flow f

O o

O 2/2 8,

N\

@ 10 +6=16

16

Toward a max-flow algorithm

Greedy algorithm.
 Start with f(e) = 0 for each edge ¢ E E.

* Find an s~ path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

ending flow value = 16

flow network G and flow f

T

O 2/2 S, 6/6 -

@ 6/10 Q 8/9 Q 10/10

17

Toward a max-flow algorithm

Greedy algorithm.
 Start with f(e) = 0 for each edge ¢ E E.

* Find an s~ path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

but max-flow value = 19

flow network G and flow f

e

O 0/2 > 6/6 -

@ 9/10 Q 9/9 Q 10/10

18

Why the greedy algorithm fails

Q. Why does the greedy algorithm fail?
A. Once greedy algorithm increases flow on an edge, it never decreases it.

Ex. Consider flow network G .
* The unique max flow f*has f*(v, w) = 0.
* Greedy algorithm could choose s—v—w—t as first path.

flow network G

Bottom line. Need some mechanism to “undo” a bad decision.

19

Residual network

Original edge. e=(u,v) € E.

original flow network G

* Flow :
T D 6117 ——@®
* Capacity c(e). / \
flow capacity

Reverse edge. ™™ = (v, u).

* “Undo” flow sent.

residual network Gs residual

Residual capacity. 4 capacity

f(ereverse)].f ereverse E E

u 11
Cf(e){c(e)f(e) ifec FE Q\]

AN
A

reverse edge

edges with positive
residual capacity

Residual network. Gf= (V, Ef, S, t, Cf). / where flow on a reverse edge

negates flow on

. Ef ={e:f(e)< cle)} U {e:f(e™V"°) > 0}/ corresponding forward edge
* Key property: f"is aflowin G,iff f+f'is aflow in G.

20

Augmenting path

Def. An augmenting path is a simple s~z path in the residual network G, .

Def. The bottleneck capacity of an augmenting path P is the minimum
residual capacity of any edge in P.

Key property. Let f be a flow and let P be an augmenting path in G,.
Then, after calling f' <= AUGMENT(/, ¢, P), the resulting f' is a flow and
val(f") = val(f) + bottleneck(Gy, P).

AUGMENT(/, ¢, P)

0 < bottleneck capacity of augmenting path P.
FOREACH edge e € P :

IF(e€E) f(e) < f(e) + O.

ELSE f(ereverse) «— f(ereverse) — §,

RETURN f.

21

Network flow: quiz 2

Which is the augmenting path of highest bottleneck capacity?
A. A-F—-=G—H
B A—-B—-C—=D—H
C. A—-F—-B—-G—H
D

A—-F—-B—-G—=(C—=D—=H

residual capacity

/ 5
@ 9 B 8 C 6 D
source
5 > 8 > 4 5 © 8 5

target

22

Ford-Fulkerson algorithm

Ford—Fulkerson augmenting path algorithm.
 Start with f(e) = 0 for each edge ¢ E E.
* Find an s~z path P in the residual network G, .
* Augment flow along path P.
* Repeat until you get stuck.

FORD—-FULKERSON(G)

FOREACHedgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)

f <= AUGMENT(f, c, P). \
Update Gv. augmenting path

RETURN f.

23

7. NETWORK FLOw |

» max-flow min-cut theorem

Algorithm Uesion

r\ JON KlEINBERG EVA TARDOS
\

\

SECTION 7.2

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (A, B).

val(f) = Z fle) — Z f(e)

e out of A e in to A

net flow across cut = 5+ 10 + 10 = 25

° e

\ 7 7,
O) o

e 5/5 . 5/8 .— 10/10 » t value of flow = 25

/

7, N
o \

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (A, B).

val(f) = Z fle) — Z f(e)

e out of A e in to A

net flow across cut = 10+ 5 + 10 = 25

5/9

5/5 + 5/8 10/10 t value of flow

10/16

25

26

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (A, B).

val(f) = Z fle) — Z f(e)

e out of A e in to A

net flow acrosscut = (10+10 +5+10+0+0-(5+5+0+0) =

meesss—— 5/ 9 9
/ I\ edges from B to A
S
T T_ 10/10 » t value of flow =

\

10/16

25

27

Network flow: quiz 3

Which is the net flow across the given cut?
A. 11 20+25-8—-11-9—6)
B. 26 20+22-8-4-4)
C. 42 (20+22)

D. 45 (20 +25)

flow capacity
N/

° 20/20 8/8

1/6 S 8/8 s 4/9

o .

14/16 ‘

4/10

22 /25

4/8

28

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (A, B).

val(f) = Z fle) — Z f(e)

e out of A e in to A
Pf. val(f) = Y fle) — > f(e)
e out of s e in to s
by flow conservation, all terms .
except forv=sare 0 _Z (Z f(e) - Z f(e)
vEA e out of v e in to v

= > fle) = > fle)

e out of A e in to A

|

29

Relationship between flows and cuts

Weak duality. Let f be any flow and (A, B) be any cut. Then, val(f) < cap(A, B).

Pf.
val(f) = Z fle) — Z f(e)

/ e out of A e in to A
< > fle)
flow value
e out of A
lemma
< E c(e)
e out of A
= cap(A,B) =
8/9
<, (9/ /
o N 2 10
s 5/5 718 9/10 ! < ey
7.
<:)
s e \0\“Q 15 \
12/16

capacity of cut = 30

IA

value of flow = 27

Certificate of optimality

Corollary. Let f be a flow and let (A, B) be any cut.
If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

weak duality

Pf. /

* Forany flow f': val(f') < cap(A, B) =val(f).
* Forany cut (A", B"): cap(A',B’) = val(f) = cap(A, B). =

N\

weak duality

8/9
2 & /

\Q\ 10

s 5/5 8/8 10/10 t)‘_ g —

76) S

/):5\ '3/6‘ \0\‘\ 10
13/16 >

capacity of cut = 28

value of flow = 28

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

MAXIMAL FLOW THROUGH A NETWORK

L. R. FORD, Jr. axnp D. R. FULKERSON

Introduction. The problem discussed in this paper was formulated by
T. Harris as follows:

“Consider a rail network connecting two cities by way of a number of
intermediate cities, where each link of the network has a number assigned to
it representing its capacity. Assuming a steady state condition, find a maximal
flow from one given city to the other.”

strong duality

?

G. B. Dantzig
D. R. Fulkerson

o &

April 15, 1955

=\

ON THE MAX FLOW MIN CUT THEOREM OF NETWORKS

N

Y

A Note On the Maximum Flow Through a Network’

P. ELIASt, A. FEINSTEIN}, AND C. E. SHANNONS

Summary—This note discusses the problem of maximizing the from one terminal to the other in the original network

rate of flow from one terminal to another, through a network which
consists of a number of branches, each of which has a limited capa-
city. The main result is a theorem: The maximum possible flow from
left to right through a network is equal to the minimum value among
all simple cut-sets. This theorem is applied to solve a more general
problem, in which a number of input nodes and a number of output
nodes are used.

passes through at least one branch in the cut-set. In the
network above, some examples of cut-sets are (d, e, f),
and (b, ¢, ¢, g, h), (d, g, h, ©). By a stmple cut-set we will
mean a cut-set such that if any branch is omitted it is no
longer a cut-set. Thus (d, e, f) and (b, ¢, ¢, g, h) are simple

ot _anto whila fd 4 h 2\ 50 nat Whan a cimanla antd cnt 1o

32

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.
Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f':
I. There exists a cut (A, B) such that cap(A, B) = val(f).
i. fis a max flow.

if Ford—Fulkerson terminates,

lii. There is no augmenting path with respect to f. «— T

[i=ii]

* This is the weak duality corollary. =

33

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.
Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f':
I. There exists a cut (A, B) such that cap(A, B) = val(f).

i. fis a max flow.

lii. There is no augmenting path with respect to f.

[1il=1ii] We prove contrapositive: —iii = —1i.
* Suppose that there is an augmenting path with respect to f.
* Can improve flow f by sending flow along this path.
* Thus, f is not a max flow. =

34

Max-flow min-cut theorem

[iii =]
* Let f be a flow with no augmenting paths.
* Let A =set of nodes reachable from s in residual network Gv.
* By definition of A: s € A.

* By definition of flow f: ¢ ¢ A. e o= (el v E B E A

must have f(e) =0
original flow network G

val(f) = > fle) = > fle)

/ e out of A e in to A A B
flow value
lemma — E : C(e) — 0 Q @

/

edgee=(v,w)withveE A, wEB
must have f(e) = c(e)

35

Computing a minimum cut from a maximum flow

Theorem. Given any max flow f, can compute a min cut (A, B) in O(m) time.

Pf. Let A = set of nodes reachable from s in residual network G¢. =

N

argument from previous slide implies that
capacity of (A, B) = value of flow f

R
IR N
< AN

A M 5<_10/r

1 K

N

16

36

7. NETWORK FLOw |

» capacity-scaling algorithm

: Alg i Design
r\ JON KLEINBERG - EVA TARDOS

SECTION 7.3

Analysis of Ford-Fulkerson algorithm (when capacities are integral)

Assumption. Every edge capacity c(e) is an integer between 1 and C.

Integrality invariant. Throughout Ford—Fulkerson, every edge flow f(e)
and residual capacity c,(e) is an integer.
Pf. By induction on the number of augmenting paths. = consider cut A = { s }

(assumes no parallel edges)

v

Theorem. Ford—Fulkerson terminates after at most val(f*) < nC
augmenting paths, where f* is a max flow.
Pf. Each augmentation increases the value of the flow by at least 1. =

Corollary. The running time of Ford—Fulkerson is O(mn C).
Pf. Can use either BFS or DFS to find an augmenting path in O(m) time. =
- f@isanintegerfor every ¢
Integrality theorem. There exists an integral max flow f*.
Pf. Since Ford—Fulkerson terminates, theorem follows from integrality invariant (and
augmenting path theorem). =

38

Ford-Fulkerson: exponential example

Q. Is generic Ford—Fulkerson algorithm poly-time in input size?
m, n, and log C

A. No. If max capacity is C, then algorithm can take = C iterations.

* sV W—f

¢ (—sp—p—>t each augmenting path
<«—— sends only 1 unit of flow
¢ (—>p—>—>t (# augmenting paths = 20)

* SSW—Y—>f

* s—V—W—t

* SSW—Y—>f

Network flow: quiz 4 >

The Ford-Fulkerson algorithm is guaranteed to terminate if the edge
capacities are ...

Rational numbers.
Real numbers.

Both A and B.

O 0 w p

Neither A nor B.

40

Choosing good augmenting paths

Use care when selecting augmenting paths.
* Some choices lead to exponential algorithms.
* Clever choices lead to polynomial algorithms.

Pathology. When edge capacities can be irrational, no guarantee
that Ford—Fulkerson terminates (or converges to a maximum flow)!

Goal. Choose augmenting paths so that:
* Can find augmenting paths efficiently.
* Few iterations.

41

Choosing good augmenting paths

Choose augmenting paths with:

* Max bottleneck capacity (“fattest’

). <“<— how to find?

* Sufficiently large bottleneck capacity. <«<—— next

* Fewest edges. <«—— anhead

Theoretical Improvements in Algorithmic Efficiency

for Network Flow Problems

JACK EDMONDS

University of Waterloo, Walerloo, Oniario, Canada

AND

RICHARD M. KARP

U niversity of California, Berkeley, California

ABsSTRACT. This paper presents new algorithms for the maximum flow problem, the Hiteheock
transportation problem, and the general minimum-cost flow problem. Upper bounds on the

numbers of steps in these algorithms are derived, and are shown to compare favorably with
upper bounds on the numbers of steps required by earlier algorithms.

Edmonds-Karp 1972 (USA)

Dokl. Akad. Nauk SSSR Soviet Math. Dokl.
Tom 194 (1970), No. 4 Vol. 11 (1970), No.5

A

ALGORITHM FOR SOLUTION OF A PROBLEM OF MAXIMUM FLOW IN A NETWORK WITH

POWER ESTIMATION
UDC 518.5 :
E. A. DINIC

Different variants of the formulation of the problem of maximal stationary flow in a network and
its many applications are given in [1]. There also is given an algorithm solving the problem in the
case where the initial data are integers (or, what is equivalent, commensurable). In the general case
this algorithm requires preliminary rounding off of the initial data, i.e. only an approximate solution
of the problem is possible. In this connection the rapidity of convergence of the algorithm is inverse-

ly proportional to the relative precision.

Dinitz 1970 (Soviet Union)

invented in response to a class exercises
by Adel’son-Vel’skil

42

Capacity-scaling algorithm

Overview. Choosing augmenting paths with “large” bottleneck capacity.
* Maintain scaling parameter A. ™~ T oy e
* Let G¢(A) be the part of the residual network containing
only those edges with capacity = A.
* Any augmenting path in G;(A) has bottleneck capacity = A.

Gr Gr(A), A =100

43

Capacity-scaling algorithm

CAPACITY-SCALING(G)

FOREACHedgee €E E: f(e) < 0.
A < largest powerof 2 < C.

WHILE (A = 1)

G¢(A) <= A-residual network of G with respect to flow f. |
WHILE (there exists an s~f path P in G¢(A))

f <= AUGMENT(f, c, P).

Update G¢(A). A-scaling phase
A<—A/2.

RETURN f.

44

Capacity-scaling algorithm: proof of correctness

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter A is a power of 2.
Pf. Initially a power of 2; each phase divides A by exactly 2. =

Integrality invariant. Throughout the algorithm, every edge flow f(e) and
residual capacity c(e) is an integer.
Pf. Same as for generic Ford—Fulkerson. =

Theorem. If capacity-scaling algorithm terminates, then fis a max flow.
Pf.

* By integrality invariant, when A =1 = G,(A) =G;.

* Upon termination of A = 1 phase, there are no augmenting paths.

* Result follows augmenting path theorem =

45

Capacity-scaling algorithm: analysis of running time

Lemma 1. There are 1 + |log, C| scaling phases.
Pf. Initially C/2 < A < C; A decreases by a factor of 2 in each iteration. =

Lemma 2. Let f be the flow at the end of a A-scaling phase.
Then, the max-flow value < val(f) + m A.
Pf. Next slide.

Lemma 3. There are < 2m augmentations per scaling phase.
Pf or equivalently,

/ at the end

* Let fbe the flow at the beginning of a A-scaling phase. of a 2A-scaling phase

* Lemma 2 = max-flow value =< val(f)+m (2 A).
* Each augmentation in a A-phase increases val(f) by atleast A. =

Theorem. The capacity-scaling algorithm takes O(m? log C) time.
Pf.

* Lemma 1+ Lemma 3 = O(m log C) augmentations.

* Finding an augmenting path takes O(m) time. =

46

Capacity-scaling algorithm: analysis of running time

Lemma 2. Let f be the flow at the end of a A-scaling phase.
Then, the max-flow value < val(f) + m A.
Pf.
* We show there exists a cut (A, B) such that cap(A, B) < val(f) + m A.
* Choose A to be the set of nodes reachable from s in G,(A).
* By definition of A: s € A.
* By definition of flow f: # & A. edge e = (v,w) withvE B,w E A

must have f(e) < A
original flow network

val(f) = Z fle) — Z f(e) A B

/ e out of A e in to A

a2 > (@9-8) = 37 A =

e out of A e in to A
> g cle) — E A — E A
e out of A e out of A e in to A
Q- .

> cap(A,B) — mA /

edgee=(v,w)withvEA,WEB
must have f(e) > c(e) — A

47

7. NETWORK FLOw |

» simple unit-capacity networks

Network flow: quiz 7

Which max-flow algorithm to use for bipartite matching?

Ford-Fulkerson: O@m n C).
Capacity scaling: O@m? log C).

Shortest augmenting path: O@m? n).

o N v »

Dinitz’ algorithm: O®m r?).

49

Simple unit-capacity networks

Def. A flow network is a simple unit-capacity network if:
* Every edge has capacity 1.
* Every node (other than s or r) has exactly one entering edge,
or exactly one leaving edge, or both.

Property. Let G be a simple unit-capacity network and let f be a 0-1 flow.
Then, residual network G, is also a simple unit-capacity network.

Ex. Bipartite matching.

@,
Q O O O O

Q O O O O
O

node capacity = 1

50

Simple unit-capacity networks

Shortest-augmenting-path algorithm.
* Normal augmentation: length of shortest path does not change.
* Special augmentation: length of shortest path strictly increases.

Theorem. [Even—Tarjan 1975] In simple unit-capacity networks,
Dinitz’ algorithm computes a maximum flow in O(m n'’?) time.
Pf.
* Lemma 1. Each phase of normal augmentations takes O(m) time.
* Lemma 2. After n'? phases, val(f) = val(f*) — n'2.

* Lemma 3. After < n'”? additional augmentations, flow is optimal.

Lemma 3. After < n'”? additional augmentations, flow is optimal.
Pf. Each augmentation increases flow value by at least 1. =

Lemma 1 and Lemma 2. Ahead.

51

Simple unit-capacity networks

Phase of normal augmentations.
- Construct level graph L.

construct level graph

—

within a phase, length of shortest
augmenting path does not change

level graph Lg

B

4

52

Simple unit-capacity networks

Phase of normal augmentations.

* Start at s, advance along an edge in Lg until reach ¢ or get stuck.

advance
O O O
O O O O
O O O
O

level graph Lg

53

Simple unit-capacity networks

Phase of normal augmentations.

- If reach ¢, augment flow; update L.; and restart from s.

augment
O O O
O O O
O O
O

level graph Lg

remove from level graph
all edges in augmenting path

54

Simple unit-capacity networks

Phase of normal augmentations.

* Start at s, advance along an edge in Lg until reach ¢ or get stuck.

advance

O

level graph Lg

55

Simple unit-capacity networks

Phase of normal augmentations.

- If get stuck, delete node from L and go to previous node.

retreat

O

level graph Lg

56

Simple unit-capacity networks

Phase of normal augmentations.

* Start at s, advance along an edge in Lg until reach ¢ or get stuck.

advance
O O O O
®\ O O
O O O
O

level graph Lg

57

Simple unit-capacity networks

Phase of normal augmentations.

- If reach ¢, augment flow; update L.; and restart from s.

augment

O O Q O
G\ O

level graph Lg

O

58

Simple unit-capacity networks

Phase of normal augmentations.
- Construct level graph L.
* Start at s, advance along an edge in Lg until reach ¢ or get stuck.
- If reach ¢, augment flow; update L.; and restart from s.
- If get stuck, delete node from L and go to previous node.

end of phase (length of shortest augmenting path has increased)

level graph Lg

O
O
Q
O
0O O O O
O

59

Simple unit-capacity networks: analysis

Phase of normal augmentations.
- Construct level graph L.
* Start at s, advance along an edge in Lg until reach ¢ or get stuck.
- If reach ¢, augment flow; update L.; and restart from s.
- If get stuck, delete node from L and go to previous node.

Lemma 1. A phase of normal augmentations takes O(m) time.
Pf.
* O(m) to create level graph L.
* O(1) per edge (each edge involved in at most one advance, retreat, and
augmentation).
* O(1) per node (each node deleted at most once). =

60

Network flow: quiz 8 L

Consider running advance-retreat algorithm in a unit-capacity network

(but not necessarily a simple one). What is running time?
~

both indegree and outdegree
of a node can be larger than 1

A. O@m).

B. O@m’?).

C. O(mn).

D. May not terminate.

61

Simple unit-capacity networks: analysis

Lemma 2. After n'? phases, val(f) = val(f*) — n'.
* After n'? phases, length of shortest augmenting path is > n!'”2.
* Thus, level graph has = n!”* levels (not including levels for s or ¢).
* Let1 < h< n'?be alevel with min number of nodes = |V,| < n'~.

level graph Lc for flow f

O
O
Q
O
c O G O O
O

Vn1/2

62

Simple unit-capacity networks: analysis

Lemma 2. After n'? phases, val(f) = val(f*) — n'.
* After n'? phases, length of shortest augmenting path is > n!'”2.
Thus, level graph has = n'”? levels (not including levels for s or ¢).
Let 1 < h < n'?be a level with min number of nodes = |V,| < n!~.
LetA = {v:L(v)< h} U {v:L()=handv has < 1 outgoing residual edge}.
caprf(A,B) < |Viu| = n'? = val(f) = val(f*) — n'?. =

unit-capacity

) simple network
residual network Gs

residual edges

e e O e O e
® O——>0 O
O O e ® e O
O
®

Vn1/2

63

Simple unit-capacity networks: review

Theorem. In simple unit-capacity networks,
Dinitz’ algorithm computes a maximum flow in O(m n'’?) time.
Pf.

* Lemma 1. Each phase takes O(m) time.

* Lemma 2. After n'? phases, val(f) = val(f*) — n'2.

* Lemma 3. After < n'”? additional augmentations, flow is optimal. =

Corollary. Dinitz’ algorithm computes max-cardinality bipartite matching
in O(m n'?) time.

64

