

Lecture slides by Kevin Wayne Copyright © 2005 Pearson-Addison Wesley <http://www.cs.princeton.edu/~wayne/kleinberg-tardos>

8. INTRACTABILITY I

- **‣** *poly-time reductions*
- **‣** *packing and covering problems*
- **‣** *constraint satisfaction problems*
- **‣** *sequencing problems*
- **‣** *partitioning problems*
- **‣** *graph coloring*
- **‣** *numerical problems*

SECTION 8.1

8. INTRACTABILITY I

‣ *poly-time reductions*

- **‣** *packing and covering problems*
- **‣** *constraint satisfaction problems*
- **‣** *sequencing problems*
- **‣** *partitioning problems*
- **‣** *graph coloring*
- **‣** *numerical problems*

Algorithm design patterns.

- ・Greedy.
- ・Divide and conquer.
- ・Dynamic programming.
- Reductions.
- ・Local search.
- ・Randomization.

Algorithm design antipatterns.

- NP-completeness. $O(n^k)$ algorithm unlikely.
- PSPACE-completeness.
- $O(n^k)$ certification algorithm unlikely.

-
- ・Undecidability. No algorithm possible.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

von Neumann (1953)

Nash (1955)

Gödel (1956)

Cobham (1964)

Edmonds (1965)

Rabin (1966)

Turing machine, word RAM, uniform circuits, …

Theory. Definition is broad and robust.

constants tend to be small, e.g., 3 *n*²

Practice. Poly-time algorithms scale to huge problems.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.

- ・Given a constant-size program, does it halt in at most *k* steps?
- ・Given a board position in an *n*-by-*n* generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.

input size $= c + \log k$

using forced capture rule

Poly-time reductions

Desiderata′. Suppose we could solve problem *Y* in polynomial time. What else could we solve in polynomial time?

Reduction. Problem *X* polynomial-time (Cook) reduces to problem *Y* if arbitrary instances of problem *X* can be solved using:

- ・Polynomial number of standard computational steps, plus
- ・Polynomial number of calls to oracle that solves problem *Y*.

Poly-time reductions

Desiderata′. Suppose we could solve problem *Y* in polynomial time. What else could we solve in polynomial time?

Reduction. Problem *X* polynomial-time (Cook) reduces to problem *Y* if arbitrary instances of problem *X* can be solved using:

- ・Polynomial number of standard computational steps, plus
- ・Polynomial number of calls to oracle that solves problem *Y*.

Notation. $X \leq_{P} Y$.

Note. We pay for time to write down instances of *Y* sent to oracle \Rightarrow instances of *Y* must be of polynomial size.

Novice mistake. Confusing $X \leq_{P} Y$ with $Y \leq_{P} X$.

Suppose that $X \leq_{p} Y$. Which of the following can we infer?

- **A.** If *X* can be solved in polynomial time, then so can *Y*.
- **B.** *X* can be solved in poly time iff *Y* can be solved in poly time.
- **C.** If *X* cannot be solved in polynomial time, then neither can *Y*.
- **D.** If *Y* cannot be solved in polynomial time, then neither can *X*.

Which of the following poly-time reductions are known?

- **A.** FIND-MAX-FLOW $\leq_{\rm P}$ FIND-MIN-CUT.
- **B.** FIND-MIN-CUT $\leq_{\rm P}$ FIND-MAX-FLOW.
- **C.** Both A and B.
- **D.** Neither A nor B.

Poly-time reductions

Design algorithms. If $X \leq_{P} Y$ and *Y* can be solved in polynomial time, then *X* can be solved in polynomial time.

Establish intractability. If $X \leq_{P} Y$ and *X* cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_{P} Y$ and $Y \leq_{P} X$, we use notation $X \equiv_{P} Y$. In this case, *X* can be solved in polynomial time iff *Y* can be.

Bottom line. Reductions classify problems according to relative difficulty.

SECTION 8.1

8. INTRACTABILITY I

‣ *poly-time reductions*

- **‣** *packing and covering problems*
- **‣** *constraint satisfaction problems*
- **‣** *sequencing problems*
- **‣** *partitioning problems*
- **‣** *graph coloring*
- **‣** *numerical problems*

Independent set

INDEPENDENT-SET. Given a graph $G = (V, E)$ and an integer k , is there a subset of *k* (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size ≥ 6 ?

Ex. Is there an independent set of size ≥ 7 ?

Vertex cover

VERTEX-COVER. Given a graph $G = (V, E)$ and an integer k , is there a subset of *k* (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Ex. Is there a vertex cover of size ≤ 4 ? Ex. Is there a vertex cover of size \leq 3 ?

Consider the following graph G. Which are true?

- **A.** The white vertices are a vertex cover of size 7.
- **B.** The black vertices are an independent set of size 3.
- **C.** Both A and B.
- **D.** Neither A nor B.

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET \equiv P VERTEX-COVER.

Pf. We show *S* is an independent set of size *k* iff *V* − *S* is a vertex cover of size $n - k$.

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET \equiv $_{\rm P}$ VERTEX-COVER.

Pf. We show *S* is an independent set of size *k* iff *V* − *S* is a vertex cover of size $n - k$.

⇒

- ・Let *S* be any independent set of size *k*.
- $V S$ is of size $n k$.
- Consider an arbitrary edge $(u, v) \in E$.
- *S* independent \Rightarrow either $u \notin S$, or $v \notin S$, or both.

 \Rightarrow either $u \in V - S$, or $v \in V - S$, or both.

• Thus, $V - S$ covers (u, v) . ■

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET \equiv $_{\rm P}$ VERTEX-COVER.

Pf. We show *S* is an independent set of size *k* iff *V* − *S* is a vertex cover of size $n - k$.

\Leftarrow

- ・Let *^V* [−] *^S* be any vertex cover of size *n k*.
- ・*S* is of size *k*.
- Consider an arbitrary edge $(u, v) \in E$.
- $V-S$ is a vertex cover \Rightarrow either $u \in V-S$, or $v \in V-S$, or both.

 \Rightarrow either $u \notin S$, or $v \notin S$, or both.

・Thus, *S* is an independent set. ▪

SET-COVER. Given a set *U* of elements, a collection *S* of subsets of *U*, and an integer *k*, are there $\leq k$ of these subsets whose union is equal to U?

Sample application.

- ・*m* available pieces of software.
- ・Set *U* of *n* capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subseteq U$ of capabilities.
- ・Goal: achieve all *n* capabilities using fewest pieces of software.

$$
U = \{ 1, 2, 3, 4, 5, 6, 7 \}
$$

\n
$$
S_a = \{ 3, 7 \}
$$

\n
$$
S_b = \{ 2, 4 \}
$$

\n
$$
S_c = \{ 3, 4, 5, 6 \}
$$

\n
$$
S_d = \{ 5 \}
$$

\n
$$
S_e = \{ 1 \}
$$

\n
$$
k = 2
$$

a set cover instance

Given the universe $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$ and the following sets, **which is the minimum size of a set cover?**

Theorem. VERTEX-COVER \leq $_{\rm P}$ SET-COVER.

Pf. Given a VERTEX-COVER instance $G = (V, E)$ and k , we construct a SET-COVER instance (*U*, *S*, *k*) that has a set cover of size *k* iff *G* has a vertex cover of size *k*.

Construction.

- Universe $U = E$.
- Include one subset for each node $v \in V$: $S_v = \{e \in E : e \text{ incident to } v\}$.

 $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$ $S_a = \{ 3, 7 \}$ $S_b = \{ 2, 4 \}$ $S_c = \{ 3, 4, 5, 6 \}$ $S_d = \{ 5 \}$ $S_e = \{ 1 \}$ $S_f = \{ 1, 2, 6, 7 \}$

> **set cover instance** $(k = 2)$

Lemma. $G = (V, E)$ contains a vertex cover of size *k* iff (U, S, k) contains a set cover of size *k*.

Pf. \Rightarrow Let *X* ⊂ *V* be a vertex cover of size *k* in *G*.

• Then $Y = \{ S_v : v \in X \}$ is a set cover of size k . ■

"yes" instances of VERTEX-COVER are solved correctly

Vertex cover reduces to set cover

Lemma. $G = (V, E)$ contains a vertex cover of size *k* iff (U, S, k) contains a set cover of size *k*.

Pf. \Leftarrow Let *Y* ⊆ *S* be a set cover of size *k* in (U, S, k) .

• Then $X = \{ v : S_v \in Y \}$ is a vertex cover of size *k* in *G*. ■

"no" instances of VERTEX-COVER are solved correctly

SECTION 8.2

8. INTRACTABILITY I

- **‣** *poly-time reductions*
- **‣** *packing and covering problems*
- **‣** *constraint satisfaction problems*
- **‣** *sequencing problems*
- **‣** *partitioning problems*
- **‣** *graph coloring*
- **‣** *numerical problems*

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment? € 3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$
\Phi = \left(\overline{x_1} \lor x_2 \lor x_3\right) \land \left(x_1 \lor \overline{x_2} \lor x_3\right) \land \left(\overline{x_1} \lor x_2 \lor x_4\right)
$$

yes instance: x_1 = true, x_2 = true, x_3 = false, x_4 = false

Key application. Electronic design automation (EDA).

Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to **P ≠ NP** conjecture.

Donald J. Trump @realDonaldTrump

Computer Scientists have so much funding and time and can't even figure out the boolean satisfiability problem. SAT!

https://www.facebook.com/pg/npcompleteteens

3-satisfiability reduces to independent set

Theorem. $3-SAT \leq p$ INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (*G*, *k*) of INDEPENDENT-SET that has an independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Construction.

- ・*G* contains 3 nodes for each clause, one for each literal.
- ・Connect 3 literals in a clause in a triangle.
- ・Connect literal to each of its negations.

 $k = 3$

G

 $\Phi = (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_4)$

Lemma. Φ is satisfiable iff *G* contains an independent set of size $k = |\Phi|$.

 $Pf. \Rightarrow$ Consider any satisfying assignment for Φ .

- ・Select one true literal from each clause/triangle.
- This is an independent set of size $k = |\Phi|$. \blacksquare

"yes" instances of 3-SAT are solved correctly

 $k = 3$

G

Lemma. Φ is satisfiable iff *G* contains an independent set of size $k = |\Phi|$.

Pf. ⇐ Let *S* be independent set of size *k*.

- ・*S* must contain exactly one node in each triangle.
- ・Set these literals to *true* (and remaining literals consistently).
- All clauses in Φ are satisfied. •

"no" instances of 3-SAT are solved correctly

 $k = 3$

G

Review

Basic reduction strategies.

- Simple equivalence: INDEPENDENT-SET \equiv P VERTEX-COVER.
- Special case to general case: VERTEX-COVER \leq _P SET-COVER.
- Encoding with gadgets: $3-SAT \leq_{P}$ INDEPENDENT-SET.

Transitivity. If $X \leq_{\text{P}} Y$ and $Y \leq_{\text{P}} Z$, then $X \leq_{\text{P}} Z$. Pf idea. Compose the two algorithms.

Ex. 3-SAT $\leq_{\rm P}$ INDEPENDENT-SET $\leq_{\rm P}$ VERTEX-COVER $\leq_{\rm P}$ SET-COVER.

DECISION, SEARCH, AND OPTIMIZATION PROBLEMS

Decision problem. Does there exist a vertex cover of size $\leq k$? Search problem. Find a vertex cover of size $\leq k$. Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

VERTEX-COVER. Does there exist a vertex cover of size $\leq k$? FIND-VERTEX-COVER. Find a vertex cover of size ≤ *k*.

Theorem. VERTEX-COVER $=$ _P FIND-VERTEX-COVER.

Pf. $\leq_{\rm P}$ Decision problem is a special case of search problem. \blacksquare

$Pf. \geq_{P}$

To find a vertex cover of size ≤ *k* :

- ・Determine if there exists a vertex cover of size [≤] *^k*.
- ・Find a vertex *v* such that *^G* [−] { *^v* } has a vertex cover of size [≤] *^k* [−] 1. (any vertex in any vertex cover of size $\leq k$ will have this property)
- **Include** ν in the vertex cover.
- Recursively find a vertex cover of size $\leq k-1$ in $G \{v\}$. ■

FIND-VERTEX-COVER. Find a vertex cover of size $\leq k$. FIND-MIN-VERTEX-COVER. Find a vertex cover of minimum size.

Theorem. FIND-VERTEX-COVER $=$ _P FIND-MIN-VERTEX-COVER.

Pf. $\leq_{\rm P}$ Search problem is a special case of optimization problem. \blacksquare

Pf. $\geq_{\rm P}$ To find vertex cover of minimum size:

- ・Binary search (or linear search) for size *k** of min vertex cover.
- ・Solve search problem for given *k**. ▪

SECTION 8.5

8. INTRACTABILITY I

- **‣** *poly-time reductions*
- **‣** *packing and covering problems*
- **‣** *constraint satisfaction problems*
- **‣** *sequencing problems*
- **‣** *partitioning problems*
- **‣** *graph coloring*
- **‣** *numerical problems*

Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?

HAMILTON-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?

Directed Hamilton cycle reduces to Hamilton cycle

DIRECTED-HAMILTON-CYCLE. Given a directed graph $G = (V, E)$, does there exist a directed cycle Γ that visits every node exactly once?

Theorem. DIRECTED-HAMILTON-CYCLE \leq _P HAMILTON-CYCLE.

Pf. Given a directed graph $G = (V, E)$, construct a graph G' with $3n$ nodes.

Directed Hamilton cycle reduces to Hamilton cycle

Lemma. *G* has a directed Hamilton cycle iff *G*ʹ has a Hamilton cycle.

Pf. ⇒

- ・Suppose *G* has a directed Hamilton cycle Γ.
- ・Then *G*ʹ has an undirected Hamilton cycle (same order). ▪

$Pf \nightharpoonup$

- ・Suppose *G*ʹ has an undirected Hamilton cycle Γʹ.
- ・^Γʹ must visit nodes in *G*ʹ using one of following two orders:

…, *black*, *white*, *blue*, *black*, *white*, *blue*, *black*, *white*, *blue*, …

…, *black*, *blue*, *white*, *black*, *blue*, *white*, *black*, *blue*, *white*, …

• Black nodes in Γ' comprise either a directed Hamilton cycle Γ in G , or reverse of one. \blacksquare

Theorem. $3-SAT \leq p$ DIRECTED-HAMILTON-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance *G* of DIRECTED-HAMILTON-CYCLE that has a Hamilton cycle iff Φ is satisfiable.

Construction overview. Let *n* denote the number of variables in Φ. We will construct a graph G that has $2ⁿ$ Hamilton cycles, with each cycle corresponding to one of the $2ⁿ$ possible truth assignments.

Construction. Given 3-SAT instance Φ with *n* variables x_i and *k* clauses.

- Construct *G* to have 2^n Hamilton cycles.
	- Intuition: traverse path *i* from left to right \Leftrightarrow set variable $x_i = true$.

Which is truth assignment corresponding to Hamilton cycle below?

- **C.** $x_1 = false, x_2 = false, x_3 = true$ **A.** $x_1 = true, x_2 = true, x_3 = true$
- **D.** $x_1 = false, x_2 = false, x_3 = false$ **B.** $x_1 = true, x_2 = true, x_3 = false$

Construction. Given 3-Sat instance Φ with *n* variables x_i and *k* clauses.

・For each clause: add a node and 2 edges per literal.

Construction. Given 3-Sat instance Φ with *n* variables x_i and *k* clauses.

・For each clause: add a node and 2 edges per literal.

Lemma. Φ is satisfiable iff *G* has a Hamilton cycle.

Pf. ⇒

- ・Suppose 3-SAT instance ^Φ has satisfying assignment *x**.
- ・Then, define Hamilton cycle Γ in *G* as follows:
	- if *x** *i* = *true*, traverse row *i* from left to right
	- if *x** *i* = *false*, traverse row *i* from right to left
	- for each clause *Cj* , there will be at least one row *i* in which we are going in "correct" direction to splice clause node C_i into cycle (and we splice in C_j exactly once) $\quad \blacksquare$

Lemma. Φ is satisfiable iff *G* has a Hamilton cycle.

$Pf. \Leftarrow$

- ・Suppose *G* has a Hamilton cycle Γ.
- If Γ enters clause node C_i , it must depart on mate edge.
	- nodes immediately before and after C_j are connected by an edge $e \in E$
	- removing *Cj* from cycle, and replacing it with edge *e* yields Hamilton cycle on $G - \{ C_i \}$
- Continuing in this way, we are left with a Hamilton cycle Γ' in $G - \{C_1, C_2, ..., C_k\}.$
- Set x_i^* = *true* if Γ' traverses row *i* left-to-right; otherwise, set x_i^* = *false*.
	- traversed in "correct" direction, and each clause is satisfied. \blacksquare

Poly-time reductions

SECTION 8.6

8. INTRACTABILITY I

- **‣** *poly-time reductions*
- **‣** *packing and covering problems*
- **‣** *constraint satisfaction problems*
- **‣** *sequencing problems*
- **‣** *partitioning problems*
- **‣** *graph coloring*
- **‣** *numerical problems*

3D-MATCHING. Given *n* instructors, *n* courses, and *n* times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

3-dimensional matching

3D-MATCHING. Given 3 disjoint sets *X*, *Y*, and *Z*, each of size *n* and a set *T* ⊆ *X* × *Y* × *Z* of triples, does there exist a set of *n* triples in *T* such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

$$
X = \{ x_1, x_2, x_3 \}, \qquad Y = \{ y_1, y_2, y_3 \}, \qquad Z = \{ z_1, z_2, z_3 \}
$$
\n
$$
T_1 = \{ x_1, y_1, z_2 \}, \qquad T_2 = \{ x_1, y_2, z_1 \}, \qquad \boxed{T_3 = \{ x_1, y_2, z_2 \}}
$$
\n
$$
T_4 = \{ x_2, y_2, z_3 \}, \qquad \boxed{T_5 = \{ x_2, y_3, z_3 \}, \qquad T_9 = \{ x_3, y_2, z_1 \}
$$

an instance of 3d-matching (with n = 3)

Remark. Generalization of bipartite matching.

3-dimensional matching

3D-MATCHING. Given 3 disjoint sets *X*, *Y*, and *Z*, each of size *n* and a set *T* ⊆ *X* × *Y* × *Z* of triples, does there exist a set of *n* triples in *T* such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

Theorem. $3-SAT \leq p 3D-MATCHING$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of 3D-MATCHING that has a perfect matching iff Φ is satisfiable.

Construction. (part 1)

number of clauses

・Create gadget for each variable *xi* with 2*k* core elements and 2*k* tip ones.

a gadget for variable x_i ($k = 4$)

Construction. (part 1)

number of clauses

- ・Create gadget for each variable *xi* with 2*k* core elements and 2*k* tip ones.
- ・No other triples will use core elements.
- ・In gadget for *xi*, any perfect matching must use either all gray triples (corresponding to $x_i = true$) or all blue ones (corresponding to $x_i = false$).

Construction. (part 2)

- ・Create gadget for each clause *Cj* with two elements and three triples.
- ・Exactly one of these triples will be used in any 3d-matching.
- ・Ensures any perfect matching uses either (i) grey core of *x*1 or (ii) blue core of x_2 or (iii) grey core of x_3 .

Construction. (part 3)

- ・There are ² *ⁿ ^k* tips: *ⁿ ^k*covered by blue/gray triples; *k* by clause triples.
- To cover remaining $(n 1) k$ tips, create $(n 1) k$ cleanup gadgets: same as clause gadget but with 2 *n k* triples, connected to every tip.

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.

Q. What are *X*, *Y*, and *Z* ?

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.

- Q. What are *X*, *Y*, and *Z* ?
- A. $X = black$, $Y = white$, and $Z = blue$.

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.

- $Pf. \Rightarrow$ If 3d-matching, then assign x_i according to gadget x_i .
- Pf. \Leftarrow If Φ is satisfiable, use any true literal in C_j to select gadget C_j triple. \blacksquare

SECTION 8.7

8. INTRACTABILITY I

- **‣** *poly-time reductions*
- **‣** *packing and covering problems*
- **‣** *constraint satisfaction problems*
- **‣** *sequencing problems*
- **‣** *partitioning problems*
- **‣** *graph coloring*
- **‣** *numerical problems*

3-colorability

3-COLOR. Given an undirected graph *G*, can the nodes be colored black, white, and blue so that no adjacent nodes have the same color?

yes instance

Intractability: quiz 6

How difficult to solve 2-COLOR?

- **A.** *O*(*m + n*) using BFS or DFS.
- **B.** *O*(*mn*) using maximum flow.
- **C.** Ω(2*ⁿ*) using brute force.
- **D.** Not even Tarjan knows.

Register allocation. Assign program variables to machine registers so that no more than *k* registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables; edge between *u* and *v* if there exists an operation where both *u* and *v* are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is *k-*colorable.

Fact. 3-COLOR \leq $_{\rm P}$ K-REGISTER-ALLOCATION for any constant $k \geq 3$.

REGISTER ALLOCATION & SPILLING VIA GRAPH COLORING

G. J. Chaitin **IBM Research** P.O.Box 218, Yorktown Heights, NY 10598 Theorem. $3-SAT \leq p 3-COLOR$.

Pf. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

Construction.

- (i) Create a graph *G* with a node for each literal.
- (ii) Connect each literal to its negation.
- (iii) Create 3 new nodes T , F , and B ; connect them in a triangle.
- (iv) Connect each literal to *B*.
- (v) For each clause *Cj*, add a gadget of 6 nodes and 13 edges.

- $Pf. \Rightarrow$ Suppose graph *G* is 3-colorable.
	- ・WLOG, assume that node *T* is colored *black*, *F* is *white*, and *B* is *blue*.
	- ・Consider assignment that sets all *black* literals to *true* (and *white* to *false*).
	- ・(iv) ensures each literal is colored either *black* or *white*.
	- ・(ii) ensures that each literal is *white* if its negation is *black* (and vice versa).

- $Pf. \Rightarrow$ Suppose graph *G* is 3-colorable.
	- ・WLOG, assume that node *T* is colored *black*, *F* is *white*, and *B* is *blue*.
	- ・Consider assignment that sets all *black* literals to *true* (and *white* to *false*).
	- ・(iv) ensures each literal is colored either *black* or *white*.
	- ・(ii) ensures that each literal is *white* if its negation is *black* (and vice versa).
	- ・(v) ensures at least one literal in each clause is *black*.

- Pf. ⇒ Suppose graph *G* is 3-colorable.
	- ・WLOG, assume that node *T* is colored *black*, *F* is *white*, and *B* is *blue*.
	- ・Consider assignment that sets all *black* literals to *true* (and *white* to *false*).
	- ・(iv) ensures each literal is colored either *black* or *white*.
	- ・(ii) ensures that each literal is *white* if its negation is *black* (and vice versa).
	- ・(v) ensures at least one literal in each clause is *black*. ▪

- $Pf. \Leftarrow$ Suppose 3-SAT instance Φ is satisfiable.
	- ・Color all *true* literals *black* and all *false* literals *white*.
	- ・Pick one *true* literal; color node below that node *white*, and node below that *blue*.
	- ・Color remaining middle row nodes *blue*.
	- ・Color remaining bottom nodes *black* or *white*, as forced. ▪

Poly-time reductions

SECTION 8.8

8. INTRACTABILITY I

- **‣** *poly-time reductions*
- **‣** *packing and covering problems*
- **‣** *constraint satisfaction problems*
- **‣** *sequencing problems*
- **‣** *partitioning problems*
- **‣** *graph coloring*
- **‣** *numerical problems*

NP-Complete by Randall Munro <http://xkcd.com/287> Creative Commons Attribution-NonCommercial 2.5

SUBSET-SUM. Given *n* natural numbers w_1, \ldots, w_n and an integer *W*, is there a subset that adds up to exactly *W* ?

Ex. { 215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655 }, *W* = 1505. Yes. $215 + 355 + 355 + 580 = 1505$.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.

Theorem. $3-SAT \leq p$ SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has a solution iff Φ is satisfiable.
Construction. Given 3-SAT instance Φ with *n* variables and *k* clauses,

form $2n + 2k$ decimal integers, each having $n + k$ digits:

- ・Include one digit for each variable *xi* and one digit for each clause *Cj*.
- ・Include two numbers for each variable *xi*.
- ・Include two numbers for each clause *Cj*.
- ・Sum of each *xi* digit is 1; sum of each *Cj* digit is 4.

Key property. No carries possible \Rightarrow each digit yields one equation.

$C_1 =$	$\neg x_1 \vee$	x_2 V	$\mathcal{X}^{\,}_{3}$
\vdots C_2 =		$x_1 \vee \neg x_2 \vee$	x_3
$\begin{bmatrix} C_3 = \end{bmatrix}$			$\begin{array}{c cccc}\n-\mathbf{x}_1 & \mathbf{V} & -\mathbf{x}_2 & \mathbf{V} & -\mathbf{x}_3\n\end{array}$

3-SAT instance

dummies to get clause columns to sum to 4

3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to *W*.

- Pf. ⇒ Suppose 3-SAT instance Φ has satisfying assignment *x**.
	- If x_i^* = *true*, select integer in row x_i ; otherwise, select integer in row ¬ *xi*.
		- ・Each *xi* digit sums to 1.
		- ・Since ^Φ is satisfiable, each *Cj* digit sums to at least 1 from x_i and $\neg x_i$ rows.
		- ・Select dummy integers to make C_i digits sum to 4. \blacksquare

3-SAT instance

dummies to get clause columns to sum to 4

3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to *W*.

- Pf. ⇐ Suppose there exists a subset *S** that sums to *W*.
	- Digit x_i forces subset S^* to select either row x_i or row $\neg x_i$ (but not both).
	- If row x_i selected, assign $x_i^* = true$; otherwise, assign $x_i^* = false$.

Digit *Cj* forces subset *S** to select

at least one literal in clause. •

SUBSET-SUM instance

3-SAT instance

75

SUBSET-SUM. Given *n* natural numbers w_1, \ldots, w_n and an integer *W*, is there a subset that adds up to exactly *W* ?

KNAPSACK. Given a set of items *X*, weights $u_i \geq 0$, values $v_i \geq 0$, a weight limit *U*, and a target value *V*, is there a subset $S \subseteq X$ such that:

$$
\sum_{i \in S} u_i \leq U, \quad \sum_{i \in S} v_i \geq V
$$

Recall. *O*(*n U*) dynamic programming algorithm for KNAPSACK.

Challenge. Prove SUBSET-SUM \leq_P KNAPSACK.

Pf. Given instance (*w*1, …, *wn*, *W*) of SUBSET-SUM, create KNAPSACK instance:

Poly-time reductions

Karp's 20 poly-time reductions from satisfiability

1985 Turing Award

RICHARD M. KARP

 86

78