
Lecture slides by Kevin Wayne 
Copyright © 2005 Pearson-Addison Wesley 

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 11/11/24 12:54  PM

8. INTRACTABILITY I

‣ poly-time reductions
‣ packing and covering problems
‣ constraint satisfaction problems
‣ sequencing problems
‣ partitioning problems
‣ graph coloring
‣ numerical problems

http://www.cs.princeton.edu/~wayne/kleinberg-tardos
http://www.cs.princeton.edu/~wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

8. INTRACTABILITY I

‣ poly-time reductions
‣ packing and covering problems
‣ constraint satisfaction problems
‣ sequencing problems
‣ partitioning problems
‣ graph coloring
‣ numerical problems

SECTION 8.1

Algorithm design patterns and antipatterns

Algorithm design patterns.
・Greedy.
・Divide and conquer.
・Dynamic programming.
・Reductions.
・Local search.
・Randomization.
 
 
Algorithm design antipatterns.
・NP-completeness. O(nk) algorithm unlikely.
・PSPACE-completeness. O(nk) certification algorithm unlikely.
・Undecidability. No algorithm possible.

3

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?
 
A working definition. Those with poly-time algorithms.
 
 
 
 
 
 
 
 
 
Theory. Definition is broad and robust.
 
 
Practice. Poly-time algorithms scale to huge problems.

4

constants tend to be small, e.g., 3 n 2

von Neumann
(1953)

Gödel
(1956)

Edmonds
(1965)

Rabin
(1966)

Cobham
(1964)

Nash
(1955)

Turing machine, word RAM, uniform circuits, …

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

5

yes probably no

shortest path longest path

min cut max cut

2-satisfiability 3-satisfiability

planar 4-colorability planar 3-colorability

bipartite vertex cover vertex cover

matching 3d-matching

primality testing factoring

linear programming integer linear programming

Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial
time and those that cannot.
 
Provably requires exponential time.
・Given a constant-size program, does it halt in at most k steps?
・Given a board position in an n-by-n generalization of checkers, 

can black guarantee a win?
 
 
 
 
 
 
 
Frustrating news. Huge number of fundamental problems have defied classification
for decades.

6

input size = c + log k

using forced capture rule

Poly-time reductions

Desiderata′. Suppose we could solve problem Y in polynomial time. 
What else could we solve in polynomial time?
 
Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary
instances of problem X can be solved using:
・Polynomial number of standard computational steps, plus
・Polynomial number of calls to oracle that solves problem Y. 

7

computational model supplemented by special piece  
of hardware that solves instances of Y in a single step

 
instance I 

(of X)
solution S to I

Algorithm 
for Y

Algorithm for X

Poly-time reductions

Desiderata′. Suppose we could solve problem Y in polynomial time. 
What else could we solve in polynomial time?
 
Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary
instances of problem X can be solved using:
・Polynomial number of standard computational steps, plus
・Polynomial number of calls to oracle that solves problem Y. 

 

Notation. X ≤ P Y.
 
Note. We pay for time to write down instances of Y sent to oracle ⇒

instances of Y must be of polynomial size.
 
Novice mistake. Confusing X ≤ P Y with Y ≤ P X.

8

Intractability: quiz 1

Suppose that X ≤ P Y. Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y.

B. X can be solved in poly time iff Y can be solved in poly time.

C. If X cannot be solved in polynomial time, then neither can Y.

D. If Y cannot be solved in polynomial time, then neither can X.

9

Intractability: quiz 2

Which of the following poly-time reductions are known?

A. FIND-MAX-FLOW ≤ P FIND-MIN-CUT.

B. FIND-MIN-CUT ≤ P FIND-MAX-FLOW.

C. Both A and B.

D. Neither A nor B.

10

O(m) time: given max flow f,
let A = set of nodes reachable from s in Gf

O(mn2) time: Dinitz’ algorithm

Poly-time reductions

Design algorithms. If X ≤ P Y and Y can be solved in polynomial time, 
then X can be solved in polynomial time.
 
Establish intractability. If X ≤ P Y and X cannot be solved in polynomial time, then Y
cannot be solved in polynomial time.
 
Establish equivalence. If both X ≤ P Y and Y ≤ P X, we use notation X ≡ P Y. 
In this case, X can be solved in polynomial time iff Y can be.
 
 
 
 
 
 
 
Bottom line. Reductions classify problems according to relative difficulty.

11

8. INTRACTABILITY I

‣ poly-time reductions
‣ packing and covering problems
‣ constraint satisfaction problems
‣ sequencing problems
‣ partitioning problems
‣ graph coloring
‣ numerical problems

SECTION 8.1

INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there  
a subset of k (or more) vertices such that no two are adjacent?
 
Ex. Is there an independent set of size ≥ 6 ?
Ex. Is there an independent set of size ≥ 7 ?

Independent set

13

independent set of size 6

Vertex cover

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a  
subset of k (or fewer) vertices such that each edge is incident to  
at least one vertex in the subset?
 
Ex. Is there a vertex cover of size ≤ 4 ?
Ex. Is there a vertex cover of size ≤ 3 ?

14

vertex cover of size 4

independent set of size 6

Intractability: quiz 3

Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.

B. The black vertices are an independent set of size 3.

C. Both A and B.

D. Neither A nor B.

15

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET ≡ P VERTEX-COVER.
Pf. We show S is an independent set of size k iff V − S is a vertex cover 
of size n – k.

16

independent set of size 6

vertex cover of size 4

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET ≡ P VERTEX-COVER.
Pf. We show S is an independent set of size k iff V − S is a vertex cover 
of size n – k. 
 
⇒

・Let S be any independent set of size k.
・V − S is of size n – k.
・Consider an arbitrary edge (u, v) ∈ E.
・S independent ⇒ either u ∉ S, or v ∉ S, or both.

 ⇒ either u ∈ V − S, or v ∈ V − S, or both.
・Thus, V − S covers (u, v). ▪ 

17

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET ≡ P VERTEX-COVER.
Pf. We show S is an independent set of size k iff V − S is a vertex cover 
of size n – k. 
 
⇐
・Let V − S be any vertex cover of size n – k.
・S is of size k.
・Consider an arbitrary edge (u, v) ∈ E.
・V − S is a vertex cover ⇒ either u ∈ V − S, or v ∈ V − S, or both.

⇒ either u ∉ S, or v ∉ S, or both.
・Thus, S is an independent set. ▪

18

Set cover

SET-COVER. Given a set U of elements, a collection S of subsets of U, and an
integer k, are there ≤ k of these subsets whose union is equal to U ?
 
Sample application.
・m available pieces of software.
・Set U of n capabilities that we would like our system to have.
・The ith piece of software provides the set Si ⊆ U of capabilities.
・Goal: achieve all n capabilities using fewest pieces of software.

19

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 } Sd = { 5 }
Se = { 1 } Sf = { 1, 2, 6, 7 }
k = 2

a set cover instance

Intractability: quiz 4

Given the universe U = { 1, 2, 3, 4, 5, 6, 7 } and the following sets,
which is the minimum size of a set cover?

A. 1

B. 2

C. 3

D. None of the above.

20

U = { 1, 2, 3, 4, 5, 6, 7 }

Sa = { 1, 4, 6 } Sb = { 1, 6, 7 }

Sc = { 1, 2, 3, 6 } Sd = { 1, 3, 5, 7 }

Se = { 2, 6, 7 } Sf = { 3, 4, 5 }

Vertex cover reduces to set cover

Theorem. VERTEX-COVER ≤ P SET-COVER.
Pf. Given a VERTEX-COVER instance G = (V, E) and k, we construct a  
SET-COVER instance (U, S, k) that has a set cover of size k iff G has a  
vertex cover of size k.
 
Construction.
・Universe U = E.
・Include one subset for each node v ∈ V : Sv = {e ∈ E : e incident to v }.

21

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } Sb = { 2, 4 }

Sc = { 3, 4, 5, 6 } Sd = { 5 }

Se = { 1 } Sf = { 1, 2, 6, 7 }

Vertex cover reduces to set cover

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains 
a set cover of size k.
 
Pf. ⇒ Let X ⊆ V be a vertex cover of size k in G.
・Then Y = { Sv : v ∈ X } is a set cover of size k. ▪

22

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } Sb = { 2, 4 }

Sc = { 3, 4, 5, 6 } Sd = { 5 }

Se = { 1 } Sf = { 1, 2, 6, 7 }

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

ccff

“yes” instances of VERTEX-COVER

are solved correctly

Vertex cover reduces to set cover

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains 
a set cover of size k.
 
Pf. ⇐ Let Y ⊆ S be a set cover of size k in (U, S, k).
・Then X = { v : Sv ∈ Y } is a vertex cover of size k in G. ▪

23

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } Sb = { 2, 4 }

Sc = { 3, 4, 5, 6 } Sd = { 5 }

Se = { 1 } Sf = { 1, 2, 6, 7 }

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

ccff

“no” instances of VERTEX-COVER

are solved correctly

8. INTRACTABILITY I

‣ poly-time reductions
‣ packing and covering problems
‣ constraint satisfaction problems
‣ sequencing problems
‣ partitioning problems
‣ graph coloring
‣ numerical problems

SECTION 8.2

Satisfiability

Literal. A Boolean variable or its negation.
 
Clause. A disjunction of literals.
 
Conjunctive normal form (CNF). A propositional  
formula Φ that is a conjunction of clauses.
 
SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals 
(and each literal corresponds to a different variable).
 
 
 
 
 
Key application. Electronic design automation (EDA).

25

€

Cj = x1 ∨ x2 ∨ x3

€

xi or xi

€

Φ = C1 ∧C2 ∧ C3∧ C4

yes instance: x1 = true, x2 = true, x3 = false, x4 = false

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

Satisfiability is hard

Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.
 
P vs. NP. This hypothesis is equivalent to P ≠ NP conjecture.

26

https://www.facebook.com/pg/npcompleteteens

3-satisfiability reduces to independent set

Theorem. 3-SAT ≤ P INDEPENDENT-SET.
Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-
SET that has an independent set of size k = ⎜Φ⎜ iff Φ is satisfiable.
 
Construction.
・G contains 3 nodes for each clause, one for each literal.
・Connect 3 literals in a clause in a triangle.
・Connect literal to each of its negations.

27

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()
k = 3

G

3-satisfiability reduces to independent set

Lemma. Φ is satisfiable iff G contains an independent set of size k = ⎜Φ⎜.
 
Pf. ⇒ Consider any satisfying assignment for Φ.
・Select one true literal from each clause/triangle.
・This is an independent set of size k = ⎜Φ⎜. ▪

28

k = 3

G

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

“yes” instances of 3-SAT

are solved correctly

3-satisfiability reduces to independent set

Lemma. Φ is satisfiable iff G contains an independent set of size k = ⎜Φ⎜.
 
Pf. ⇐ Let S be independent set of size k.
・S must contain exactly one node in each triangle.
・Set these literals to true (and remaining literals consistently).
・All clauses in Φ are satisfied. ▪

29

k = 3

G

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

“no” instances of 3-SAT

are solved correctly

Review

Basic reduction strategies.
・Simple equivalence: INDEPENDENT-SET ≡ P VERTEX-COVER.

・Special case to general case: VERTEX-COVER ≤ P SET-COVER.

・Encoding with gadgets: 3-SAT ≤ P INDEPENDENT-SET.
 
 
Transitivity. If X ≤ P Y and Y ≤ P Z, then X ≤ P Z.
Pf idea. Compose the two algorithms.
 
Ex. 3-SAT ≤ P INDEPENDENT-SET ≤ P VERTEX-COVER ≤ P SET-COVER.

30

DECISION, SEARCH, AND OPTIMIZATION PROBLEMS

Decision problem. Does there exist a vertex cover of size ≤ k ?
Search problem. Find a vertex cover of size ≤ k.
Optimization problem. Find a vertex cover of minimum size.
 
Goal. Show that all three problems poly-time reduce to one another.

31

SEARCH PROBLEMS VS. DECISION PROBLEMS

VERTEX-COVER. Does there exist a vertex cover of size ≤ k ?
FIND-VERTEX-COVER. Find a vertex cover of size ≤ k.
 
Theorem. VERTEX-COVER ≡ P FIND-VERTEX-COVER.
 
Pf. ≤ P Decision problem is a special case of search problem. ▪
 
Pf. ≥ P
To find a vertex cover of size ≤ k :

・Determine if there exists a vertex cover of size ≤ k.

・Find a vertex v such that G − { v } has a vertex cover of size ≤ k − 1. 
(any vertex in any vertex cover of size ≤ k will have this property)

・Include v in the vertex cover.

・Recursively find a vertex cover of size ≤ k − 1 in G − { v }. ▪

32delete v and all incident edges

OPTIMIZATION PROBLEMS VS. SEARCH PROBLEMS

FIND-VERTEX-COVER. Find a vertex cover of size ≤ k.
FIND-MIN-VERTEX-COVER. Find a vertex cover of minimum size.
 
Theorem. FIND-VERTEX-COVER ≡ P FIND-MIN-VERTEX-COVER.
 
Pf. ≤ P Search problem is a special case of optimization problem. ▪
 
Pf. ≥ P To find vertex cover of minimum size:

・Binary search (or linear search) for size k* of min vertex cover.

・Solve search problem for given k*. ▪

33

8. INTRACTABILITY I

‣ poly-time reductions
‣ packing and covering problems
‣ constraint satisfaction problems
‣ sequencing problems
‣ partitioning problems
‣ graph coloring
‣ numerical problems

SECTION 8.5

HAMILTON-CYCLE. Given an undirected graph G = (V, E), does there exist a cycle Γ
that visits every node exactly once?

Hamilton cycle

35
yes

Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph G = (V, E), does there exist a cycle Γ
that visits every node exactly once?

36

no

1

3

5

1ʹ

3ʹ

2

4

2ʹ

4ʹ

Directed Hamilton cycle reduces to Hamilton cycle

DIRECTED-HAMILTON-CYCLE. Given a directed graph G = (V, E), does there exist a
directed cycle Γ that visits every node exactly once?
 
Theorem. DIRECTED-HAMILTON-CYCLE ≤ P HAMILTON-CYCLE. 

Pf. Given a directed graph G = (V, E), construct a graph G ʹ with 3n nodes.

vin

aout

bout

cout

ein

v vout

v

37

a

b

c

d

e

din

directed graph G undirected graph G′

Directed Hamilton cycle reduces to Hamilton cycle

Lemma. G has a directed Hamilton cycle iff G ʹ has a Hamilton cycle.
 
Pf. ⇒
・Suppose G has a directed Hamilton cycle Γ.
・Then G ʹ has an undirected Hamilton cycle (same order). ▪
 
Pf. ⇐
・Suppose G ʹ has an undirected Hamilton cycle Γ ʹ.
・Γ ʹ must visit nodes in G ʹ using one of following two orders:

 …, black, white, blue, black, white, blue, black, white, blue, …
 …, black, blue, white, black, blue, white, black, blue, white, …

・Black nodes in Γ ʹ comprise either a directed Hamilton cycle Γ in G, 
or reverse of one. ▪

38

3-satisfiability reduces to directed Hamilton cycle

Theorem. 3-SAT ≤ P DIRECTED-HAMILTON-CYCLE.
 
Pf. Given an instance Φ of 3-SAT, we construct an instance G of  
DIRECTED-HAMILTON-CYCLE that has a Hamilton cycle iff Φ is satisfiable.
 
Construction overview. Let n denote the number of variables in Φ. 
We will construct a graph G that has 2n Hamilton cycles, with each cycle
corresponding to one of the 2n possible truth assignments.

39

3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables xi and k clauses.
・Construct G to have 2n Hamilton cycles.
・Intuition: traverse path i from left to right ⇔ set variable xi = true.

40

x1

x2

x3

s

t

Intractability: quiz 5

41

s

t

s

t

x1

x2

x3

C. x1 = false, x2 = false, x3 = true

D. x1 = false, x2 = false, x3 = false

Which is truth assignment corresponding to Hamilton cycle below?

A. x1 = true, x2 = true, x3 = true

B. x1 = true, x2 = true, x3 = false

Construction. Given 3-SAT instance Φ with n variables xi and k clauses.
・For each clause: add a node and 2 edges per literal.

3-satisfiability reduces to directed Hamilton cycle

42

Cj Ck

xi = true
xi = false

xi

connect in this way
if xi appears in clause Cj

node for clause j

connect in this way
if xi appears in clause Ck

node for clause k

Construction. Given 3-SAT instance Φ with n variables xi and k clauses.
・For each clause: add a node and 2 edges per literal.

3-satisfiability reduces to directed Hamilton cycle

433k + 3

x1

x2

x3

clause node 1C1 = x1 � x2 � x3 clause node 2 C2 = x1 � x2 � x3

s

t

3-satisfiability reduces to directed Hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.
 
Pf. ⇒
・Suppose 3-SAT instance Φ has satisfying assignment x*.
・Then, define Hamilton cycle Γ in G as follows:

- if x*
i = true, traverse row i from left to right

- if x*
i = false, traverse row i from right to left

- for each clause Cj , there will be at least one row i in which we are going in
“correct” direction to splice clause node Cj into cycle  
(and we splice in Cj exactly once) ▪

44

3-satisfiability reduces to directed Hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.
 
Pf. ⇐
・Suppose G has a Hamilton cycle Γ.
・If Γ enters clause node Cj , it must depart on mate edge.

- nodes immediately before and after Cj are connected by an edge e ∈ E
- removing Cj from cycle, and replacing it with edge e yields Hamilton cycle on

G – { Cj }

・Continuing in this way, we are left with a Hamilton cycle Γʹ in 
G – { C1 , C2 , …, Ck }.
・Set x*

i = true if Γ ʹ traverses row i left-to-right; otherwise, set x*
i = false.

・traversed in “correct” direction, and each clause is satisfied. ▪

45

Poly-time reductions

46

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-COLOR

HAM-CYCLE

SUBSET-
SUM

KNAPSACK

SET-COVER

packing and covering sequencing partitioning numerical

constraint satisfaction

3-SAT poly-tim
e reduces

to INDEPENDENT-SET

8. INTRACTABILITY I

‣ poly-time reductions
‣ packing and covering problems
‣ constraint satisfaction problems
‣ sequencing problems
‣ partitioning problems
‣ graph coloring
‣ numerical problems

SECTION 8.6

3-dimensional matching

3D-MATCHING. Given n instructors, n courses, and n times, and a list of the possible
courses and times each instructor is willing to teach, is it possible to make an
assignment so that all courses are taught at different times?

48

instructor course time

Wayne COS 226 TTh 11–12:20

Wayne COS 423 MW 11–12:20

Wayne COS 423 TTh 11–12:20

Tardos COS 423 TTh 3–4:20

Tardos COS 523 TTh 3–4:20

Kleinberg COS 226 TTh 3–4:20

Kleinberg COS 226 MW 11–12:20

Kleinberg COS 423 MW 11–12:20

3-dimensional matching

3D-MATCHING. Given 3 disjoint sets X, Y, and Z, each of size n and a set 
T ⊆ X × Y × Z of triples, does there exist a set of n triples in T such that 
each element of X ∪ Y ∪ Z is in exactly one of these triples?
 
 
 
 
 
 
 
 
 
 
 
 
Remark. Generalization of bipartite matching.

49

X = { x1, x2, x3 }, Y = { y1, y2, y3 }, Z = { z1, z2, z3 }

T1 = { x1, y1, z2 }, T2 = { x1, y2, z1 }, T3 = { x1, y2, z2 }
T4 = { x2, y2, z3 }, T5 = { x2, y3, z3 },
T7 = { x3, y1, z3 }, T8 = { x3, y1, z1 }, T9 = { x3, y2, z1 }

an instance of 3d-matching (with n = 3)

3-dimensional matching

3D-MATCHING. Given 3 disjoint sets X, Y, and Z, each of size n and a set 
T ⊆ X × Y × Z of triples, does there exist a set of n triples in T such that 
each element of X ∪ Y ∪ Z is in exactly one of these triples?
 
Theorem. 3-SAT ≤ P 3D-MATCHING.
Pf. Given an instance Φ of 3-SAT, we construct an instance of 3D-MATCHING that
has a perfect matching iff Φ is satisfiable.

50

3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)
・Create gadget for each variable xi with 2k core elements and 2k tip ones.

51

number of clauses

a gadget for variable xi (k = 4)

clause 1 tips

clause 2 tips

clause 3 tips

core
elements

3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)
・Create gadget for each variable xi with 2k core elements and 2k tip ones.
・No other triples will use core elements.
・In gadget for xi, any perfect matching must use either all gray triples 

(corresponding to xi = true) or all blue ones (corresponding to xi = false).

52

number of clauses

true

false

k = 2 clauses  
n = 3 variables

x1 x3x2

clause 1 tips core

clause 2 tips

3-satisfiability reduces to 3-dimensional matching

Construction. (part 2)
・Create gadget for each clause Cj with two elements and three triples.
・Exactly one of these triples will be used in any 3d-matching.
・Ensures any perfect matching uses either (i) grey core of x1 or 

(ii) blue core of x2 or (iii) grey core of x3.

53
x1 x3x2

clause 1 tips

true

false

each clause assigned 
its own 2 adjacent tips

clause 1 gadget

C1

core

3-satisfiability reduces to 3-dimensional matching

Construction. (part 3)
・There are 2 n k tips: n k covered by blue/gray triples; k by clause triples.
・To cover remaining (n – 1) k tips, create (n – 1) k cleanup gadgets: 

same as clause gadget but with 2 n k triples, connected to every tip.

54
x1 x3x2

clause 1 tips

clause 1 gadget

true

false

C1

core

cleanup gadget

···

3-satisfiability reduces to 3-dimensional matching

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.
 
Q. What are X, Y, and Z ?

x1 x3x2

clause 1 tips

55

clause 1 gadget

true

false

C1

core

···

cleanup gadget

3-satisfiability reduces to 3-dimensional matching

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.
 
Q. What are X, Y, and Z ?
A. X = black, Y = white, and Z = blue.

56

clause 1 gadget

true

false

x1 x3x2

clause 1 tips

C1

core

cleanup gadget

···

3-satisfiability reduces to 3-dimensional matching

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.
 
Pf. ⇒ If 3d-matching, then assign xi according to gadget xi.
Pf. ⇐ If Φ is satisfiable, use any true literal in Cj to select gadget Cj triple. ▪

57

clause 1 gadget

true

false

x1 x3x2

clause 1 tips

C1

core

cleanup gadget

···

8. INTRACTABILITY I

‣ poly-time reductions
‣ packing and covering problems
‣ constraint satisfaction problems
‣ sequencing problems
‣ partitioning problems
‣ graph coloring
‣ numerical problems

SECTION 8.7

3-COLOR. Given an undirected graph G, can the nodes be colored black, white, and
blue so that no adjacent nodes have the same color?

3-colorability

59

yes instance

Intractability: quiz 6

How difficult to solve 2-COLOR?

A. O(m + n) using BFS or DFS.

B. O(mn) using maximum flow.

C. Ω(2n) using brute force.

D. Not even Tarjan knows.

60

Application: register allocation

Register allocation. Assign program variables to machine registers so that 
no more than k registers are used and no two program variables that are needed at
the same time are assigned to the same register.
 
Interference graph. Nodes are program variables; edge between u and v
if there exists an operation where both u and v are “live” at the same time.
 
Observation. [Chaitin 1982] Can solve register allocation problem iff interference
graph is k-colorable.
 
Fact. 3-COLOR ≤ P K-REGISTER-ALLOCATION for any constant k ≥ 3.

61

ACM SIGPLAN 67 Best of PLDI 1979-1999

3-satisfiability reduces to 3-colorability

Theorem. 3-SAT ≤ P 3-COLOR.
 
Pf. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that 
is 3-colorable iff Φ is satisfiable.

62

3-satisfiability reduces to 3-colorability

Construction.
(i) Create a graph G with a node for each literal.
(ii) Connect each literal to its negation.
(iii) Create 3 new nodes T, F, and B; connect them in a triangle.
(iv) Connect each literal to B.
(v) For each clause Cj, add a gadget of 6 nodes and 13 edges.

63

T

B

F

to be described later

T

B

F

3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.
Pf. ⇒ Suppose graph G is 3-colorable.
・WLOG, assume that node T is colored black, F is white, and B is blue.
・Consider assignment that sets all black literals to true (and white to false).
・(iv) ensures each literal is colored either black or white.
・(ii) ensures that each literal is white if its negation is black (and vice versa).

64

T

B

F

true false

base

3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.
Pf. ⇒ Suppose graph G is 3-colorable.
・WLOG, assume that node T is colored black, F is white, and B is blue.
・Consider assignment that sets all black literals to true (and white to false).
・(iv) ensures each literal is colored either black or white.
・(ii) ensures that each literal is white if its negation is black (and vice versa).
・(v) ensures at least one literal in each clause is black.

65

T F

B

true false

6-node gadget

€

Cj = x1 ∨ x2 ∨ x3

Lemma. Graph G is 3-colorable iff Φ is satisfiable.
Pf. ⇒ Suppose graph G is 3-colorable.
・WLOG, assume that node T is colored black, F is white, and B is blue.
・Consider assignment that sets all black literals to true (and white to false).
・(iv) ensures each literal is colored either black or white.
・(ii) ensures that each literal is white if its negation is black (and vice versa).
・(v) ensures at least one literal in each clause is black. ▪

contradiction
(not a 3-coloring)

3-satisfiability reduces to 3-colorability

66

T F

B
suppose, for the sake of contradiction,

that all 3 literals are white in some 3-coloring

true false

€

Cj = x1 ∨ x2 ∨ x3

💣

3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.
Pf. ⇐ Suppose 3-SAT instance Φ is satisfiable.
・Color all true literals black and all false literals white.
・Pick one true literal; color node below that node white, 

and node below that blue.
・Color remaining middle row nodes blue.
・Color remaining bottom nodes black or white, as forced. ▪

67

T F

B
a literal set to true

in 3-SAT assignment

true false

€

Cj = x1 ∨ x2 ∨ x3x3

Poly-time reductions

68

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-COLOR

HAM-CYCLE

SUBSET-
SUM

KNAPSACK

SET-COVER

packing and covering sequencing partitioning numerical

constraint satisfaction

3-SAT poly-tim
e reduces

to INDEPENDENT-SET

8. INTRACTABILITY I

‣ poly-time reductions
‣ packing and covering problems
‣ constraint satisfaction problems
‣ sequencing problems
‣ partitioning problems
‣ graph coloring
‣ numerical problems

SECTION 8.8

My hobby

70

NP-Complete by Randall Munro
http://xkcd.com/287

Creative Commons Attribution-NonCommercial 2.5

http://xkcd.com/287
http://xkcd.com/287

Subset sum

SUBSET-SUM. Given n natural numbers w1, …, wn and an integer W, is there a subset
that adds up to exactly W ?
 
Ex. { 215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655 }, W = 1505.
Yes. 215 + 355 + 355 + 580 = 1505.
 
Remark. With arithmetic problems, input integers are encoded in binary. Poly-time
reduction must be polynomial in binary encoding.

71

Subset sum

Theorem. 3-SAT ≤ P SUBSET-SUM.
 
Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM 
that has a solution iff Φ is satisfiable.

72

3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, 
form 2n + 2k decimal integers, each having n + k digits:
・Include one digit for each variable xi and one digit for each clause Cj.
・Include two numbers for each variable xi.
・Include two numbers for each clause Cj.
・Sum of each xi digit is 1; 

sum of each Cj digit is 4.
 
Key property. No carries possible ⇒
each digit yields one equation.

73

3-SAT instance

SUBSET-SUM instance

C1 = ¬ x1 ∨ x2 ∨ x3

C2 = x1 ∨ ¬ x2 ∨ x3

C3 = ¬ x1 ∨ ¬ x2 ∨ ¬ x3

x1 x2 x3 C1 C2 C3

x1 1 0 0 0 1 0 100,010

¬ x1 1 0 0 1 0 1 100,101

x2 0 1 0 1 0 0 10,100

¬ x2 0 1 0 0 1 1 10,011

x3 0 0 1 1 1 0 1,110

¬ x3 0 0 1 0 0 1 1,001

0 0 0 1 0 0 100

0 0 0 2 0 0 200

0 0 0 0 1 0 10

0 0 0 0 2 0 20

0 0 0 0 0 1 1

0 0 0 0 0 2 2

W 1 1 1 4 4 4 111,444

dummies to get clause  
columns to sum to 4

3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.
Pf. ⇒ Suppose 3-SAT instance Φ has satisfying assignment x*.
・If x*

i = true, select integer in row xi ; 
otherwise, select integer in row ¬ xi.
・Each xi digit sums to 1.
・Since Φ is satisfiable, each Cj digit sums 

to at least 1 from xi and ¬ xi rows.
・Select dummy integers to make  

Cj digits sum to 4. ▪

74SUBSET-SUM instance

3-SAT instance

dummies to get clause  
columns to sum to 4

C1 = ¬ x1 ∨ x2 ∨ x3

C2 = x1 ∨ ¬ x2 ∨ x3

C3 = ¬ x1 ∨ ¬ x2 ∨ ¬ x3

x1 x2 x3 C1 C2 C3

x1 1 0 0 0 1 0 100,010

¬ x1 1 0 0 1 0 1 100,101

x2 0 1 0 1 0 0 10,100

¬ x2 0 1 0 0 1 1 10,011

x3 0 0 1 1 1 0 1,110

¬ x3 0 0 1 0 0 1 1,001

0 0 0 1 0 0 100

0 0 0 2 0 0 200

0 0 0 0 1 0 10

0 0 0 0 2 0 20

0 0 0 0 0 1 1

0 0 0 0 0 2 2

W 1 1 1 4 4 4 111,444

3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.
Pf. ⇐ Suppose there exists a subset S* that sums to W.
・Digit xi forces subset S* to select either row xi or row ¬ xi (but not both).
・If row xi selected, assign x*

i = true ; otherwise, assign x*
i = false. 

Digit Cj forces subset S* to select 
at least one literal in clause. ▪

75

dummies to get clause  
columns to sum to 4

SUBSET-SUM instance

3-SAT instance

C1 = ¬ x1 ∨ x2 ∨ x3

C2 = x1 ∨ ¬ x2 ∨ x3

C3 = ¬ x1 ∨ ¬ x2 ∨ ¬ x3

x1 x2 x3 C1 C2 C3

x1 1 0 0 0 1 0 100,010

¬ x1 1 0 0 1 0 1 100,101

x2 0 1 0 1 0 0 10,100

¬ x2 0 1 0 0 1 1 10,011

x3 0 0 1 1 1 0 1,110

¬ x3 0 0 1 0 0 1 1,001

0 0 0 1 0 0 100

0 0 0 2 0 0 200

0 0 0 0 1 0 10

0 0 0 0 2 0 20

0 0 0 0 0 1 1

0 0 0 0 0 2 2

W 1 1 1 4 4 4 111,444

SUBSET SUM REDUCES TO KNAPSACK

SUBSET-SUM. Given n natural numbers w1, …, wn and an integer W, is there a
subset that adds up to exactly W ?
 
KNAPSACK. Given a set of items X, weights ui ≥ 0, values vi ≥ 0, a weight limit U,
and a target value V, is there a subset S ⊆ X such that:
 
 
 
 
Recall. O(n U) dynamic programming algorithm for KNAPSACK. 

Challenge. Prove SUBSET-SUM ≤ P KNAPSACK.
Pf. Given instance (w1, …, wn, W) of SUBSET-SUM, create KNAPSACK instance:

76

�

i�S

wi � W,
�

i�S

wi � W
<latexit sha1_base64="E3+YynCZrd9UILgGkWakl/z7LUs=">AAACcXicbVDLSgMxFE3Hd31VXYmbYBEEpcyIoOBGcKFLRWuFThkymdsazGTG5EYtQz/Jr3El6Ff4A6YPwVYvhBzOOTc398S5FAZ9/73kTU3PzM7NL5QXl5ZXVitr67cms5pDnWcy03cxMyCFgjoKlHCXa2BpLKERP5z19cYTaCMydYPdHFop6yjRFpyho6LKeWhsGhWChkLR6x59jhw8oaGE/tXYp+GjZUl5wuWkH2NnaIwqVb/mD4r+BcEIVMmoLqO10nqYZNymoJBLZkwz8HNsFUyj4BJ65dAayBl/YB1oOqhYCqZVDDbu0R3HJLSdaXcU0gH7u6NgqTHdNHbOlOG9mdT65H9a02L7uFUIlVsExYeD2lZSzGg/PpoIDRxl1wHGtXB/pfyeacbRhTw2ZfB2Dnxsk+LFKsGzBCZYiS+oWc+lGExm9hfcHtQCvxZcHVZPj0d5zpMtsk12SUCOyCm5IJekTjh5JW/kg3yWvrxNj3rbQ6tXGvVskLHy9r4B/AO8tw==</latexit><latexit sha1_base64="E3+YynCZrd9UILgGkWakl/z7LUs=">AAACcXicbVDLSgMxFE3Hd31VXYmbYBEEpcyIoOBGcKFLRWuFThkymdsazGTG5EYtQz/Jr3El6Ff4A6YPwVYvhBzOOTc398S5FAZ9/73kTU3PzM7NL5QXl5ZXVitr67cms5pDnWcy03cxMyCFgjoKlHCXa2BpLKERP5z19cYTaCMydYPdHFop6yjRFpyho6LKeWhsGhWChkLR6x59jhw8oaGE/tXYp+GjZUl5wuWkH2NnaIwqVb/mD4r+BcEIVMmoLqO10nqYZNymoJBLZkwz8HNsFUyj4BJ65dAayBl/YB1oOqhYCqZVDDbu0R3HJLSdaXcU0gH7u6NgqTHdNHbOlOG9mdT65H9a02L7uFUIlVsExYeD2lZSzGg/PpoIDRxl1wHGtXB/pfyeacbRhTw2ZfB2Dnxsk+LFKsGzBCZYiS+oWc+lGExm9hfcHtQCvxZcHVZPj0d5zpMtsk12SUCOyCm5IJekTjh5JW/kg3yWvrxNj3rbQ6tXGvVskLHy9r4B/AO8tw==</latexit><latexit sha1_base64="E3+YynCZrd9UILgGkWakl/z7LUs=">AAACcXicbVDLSgMxFE3Hd31VXYmbYBEEpcyIoOBGcKFLRWuFThkymdsazGTG5EYtQz/Jr3El6Ff4A6YPwVYvhBzOOTc398S5FAZ9/73kTU3PzM7NL5QXl5ZXVitr67cms5pDnWcy03cxMyCFgjoKlHCXa2BpLKERP5z19cYTaCMydYPdHFop6yjRFpyho6LKeWhsGhWChkLR6x59jhw8oaGE/tXYp+GjZUl5wuWkH2NnaIwqVb/mD4r+BcEIVMmoLqO10nqYZNymoJBLZkwz8HNsFUyj4BJ65dAayBl/YB1oOqhYCqZVDDbu0R3HJLSdaXcU0gH7u6NgqTHdNHbOlOG9mdT65H9a02L7uFUIlVsExYeD2lZSzGg/PpoIDRxl1wHGtXB/pfyeacbRhTw2ZfB2Dnxsk+LFKsGzBCZYiS+oWc+lGExm9hfcHtQCvxZcHVZPj0d5zpMtsk12SUCOyCm5IJekTjh5JW/kg3yWvrxNj3rbQ6tXGvVskLHy9r4B/AO8tw==</latexit><latexit sha1_base64="E3+YynCZrd9UILgGkWakl/z7LUs=">AAACcXicbVDLSgMxFE3Hd31VXYmbYBEEpcyIoOBGcKFLRWuFThkymdsazGTG5EYtQz/Jr3El6Ff4A6YPwVYvhBzOOTc398S5FAZ9/73kTU3PzM7NL5QXl5ZXVitr67cms5pDnWcy03cxMyCFgjoKlHCXa2BpLKERP5z19cYTaCMydYPdHFop6yjRFpyho6LKeWhsGhWChkLR6x59jhw8oaGE/tXYp+GjZUl5wuWkH2NnaIwqVb/mD4r+BcEIVMmoLqO10nqYZNymoJBLZkwz8HNsFUyj4BJ65dAayBl/YB1oOqhYCqZVDDbu0R3HJLSdaXcU0gH7u6NgqTHdNHbOlOG9mdT65H9a02L7uFUIlVsExYeD2lZSzGg/PpoIDRxl1wHGtXB/pfyeacbRhTw2ZfB2Dnxsk+LFKsGzBCZYiS+oWc+lGExm9hfcHtQCvxZcHVZPj0d5zpMtsk12SUCOyCm5IJekTjh5JW/kg3yWvrxNj3rbQ6tXGvVskLHy9r4B/AO8tw==</latexit>

ui = vi = wi

U = V = W
<latexit sha1_base64="ztepsKcxWrMsucCEazMymKjWj2M=">AAACTHicbVBNSwMxEM1WrbV+tfXoJVgET2VXFL0IghePFewHtEvJplMNzWaXZFYtS+/+Gq/6K7z7P7yJYLrdg60+mOHxZiaTeUEshUHX/XAKK6trxfXSRnlza3tnt1KttU2UaA4tHslIdwNmQAoFLRQooRtrYGEgoROMr2b1zgNoIyJ1i5MY/JDdKTESnKGVBpWDZCDoBX3I8qPN/X6vcQqhX25ZoW2jM6jU3Yabgf4lXk7qJEdzUHVq/WHEkxAUcsmM6XlujH7KNAouYVruJwZixsfsDnqWKhaC8dPsmCk9tMqQjiJtQyHN1N8TKQuNmYSB7QwZ3pvl2kz8r9ZLcHTup0LFCYLi80WjRFKM6MwZOhQaOMqJJYxrYf9K+T3TjKP1b2FL9nYMfOGS9ClRgkdDWFIlPqFmU+uit+zZX9I+bnhuw7s5qV+e536WyD45IEfEI2fkklyTJmkRTp7JC3klb8678+l8Od/z1oKTz+yRBRSKPyjcsSI=</latexit><latexit sha1_base64="ztepsKcxWrMsucCEazMymKjWj2M=">AAACTHicbVBNSwMxEM1WrbV+tfXoJVgET2VXFL0IghePFewHtEvJplMNzWaXZFYtS+/+Gq/6K7z7P7yJYLrdg60+mOHxZiaTeUEshUHX/XAKK6trxfXSRnlza3tnt1KttU2UaA4tHslIdwNmQAoFLRQooRtrYGEgoROMr2b1zgNoIyJ1i5MY/JDdKTESnKGVBpWDZCDoBX3I8qPN/X6vcQqhX25ZoW2jM6jU3Yabgf4lXk7qJEdzUHVq/WHEkxAUcsmM6XlujH7KNAouYVruJwZixsfsDnqWKhaC8dPsmCk9tMqQjiJtQyHN1N8TKQuNmYSB7QwZ3pvl2kz8r9ZLcHTup0LFCYLi80WjRFKM6MwZOhQaOMqJJYxrYf9K+T3TjKP1b2FL9nYMfOGS9ClRgkdDWFIlPqFmU+uit+zZX9I+bnhuw7s5qV+e536WyD45IEfEI2fkklyTJmkRTp7JC3klb8678+l8Od/z1oKTz+yRBRSKPyjcsSI=</latexit><latexit sha1_base64="ztepsKcxWrMsucCEazMymKjWj2M=">AAACTHicbVBNSwMxEM1WrbV+tfXoJVgET2VXFL0IghePFewHtEvJplMNzWaXZFYtS+/+Gq/6K7z7P7yJYLrdg60+mOHxZiaTeUEshUHX/XAKK6trxfXSRnlza3tnt1KttU2UaA4tHslIdwNmQAoFLRQooRtrYGEgoROMr2b1zgNoIyJ1i5MY/JDdKTESnKGVBpWDZCDoBX3I8qPN/X6vcQqhX25ZoW2jM6jU3Yabgf4lXk7qJEdzUHVq/WHEkxAUcsmM6XlujH7KNAouYVruJwZixsfsDnqWKhaC8dPsmCk9tMqQjiJtQyHN1N8TKQuNmYSB7QwZ3pvl2kz8r9ZLcHTup0LFCYLi80WjRFKM6MwZOhQaOMqJJYxrYf9K+T3TjKP1b2FL9nYMfOGS9ClRgkdDWFIlPqFmU+uit+zZX9I+bnhuw7s5qV+e536WyD45IEfEI2fkklyTJmkRTp7JC3klb8678+l8Od/z1oKTz+yRBRSKPyjcsSI=</latexit><latexit sha1_base64="ztepsKcxWrMsucCEazMymKjWj2M=">AAACTHicbVBNSwMxEM1WrbV+tfXoJVgET2VXFL0IghePFewHtEvJplMNzWaXZFYtS+/+Gq/6K7z7P7yJYLrdg60+mOHxZiaTeUEshUHX/XAKK6trxfXSRnlza3tnt1KttU2UaA4tHslIdwNmQAoFLRQooRtrYGEgoROMr2b1zgNoIyJ1i5MY/JDdKTESnKGVBpWDZCDoBX3I8qPN/X6vcQqhX25ZoW2jM6jU3Yabgf4lXk7qJEdzUHVq/WHEkxAUcsmM6XlujH7KNAouYVruJwZixsfsDnqWKhaC8dPsmCk9tMqQjiJtQyHN1N8TKQuNmYSB7QwZ3pvl2kz8r9ZLcHTup0LFCYLi80WjRFKM6MwZOhQaOMqJJYxrYf9K+T3TjKP1b2FL9nYMfOGS9ClRgkdDWFIlPqFmU+uit+zZX9I+bnhuw7s5qV+e536WyD45IEfEI2fkklyTJmkRTp7JC3klb8678+l8Od/z1oKTz+yRBRSKPyjcsSI=</latexit>

�

i�S

ui � U,
�

i�S

vi � V
<latexit sha1_base64="DjnTzvj+WHf+FaTftn84jpbOcCs=">AAACcnicbVDLSgMxFE3Hd31V3ekmWgQXUmZEUHAjuHGpaKvQKUMmc1uDmcyY3Ihl6C/5NW5c6Ff4AabjLGz1QsjhnHNzc0+cS2HQ999r3szs3PzC4lJ9eWV1bb2xsdkxmdUc2jyTmb6PmQEpFLRRoIT7XANLYwl38ePFWL97Bm1Epm5xmEMvZQMl+oIzdFTUuAyNTaNC0FAoejOiNnLwjIYSxlf7kIZPliX1KZeTnivjoDR26lGj6bf8suhfEFSgSaq6ijZqm2GScZuCQi6ZMd3Az7FXMI2CSxjVQ2sgZ/yRDaDroGIpmF5Rrjyi+45JaD/T7iikJfu7o2CpMcM0ds6U4YOZ1sbkf1rXYv+0VwiVWwTFfwb1raSY0XF+NBEaOMqhA4xr4f5K+QPTjKNLeWJK+XYOfGKT4sUqwbMEpliJL6jZyKUYTGf2F3SOWoHfCq6Pm+enVZ6LZIfskQMSkBNyTi7JFWkTTl7JG/kgn7Uvb9vb9arwvVrVs0Umyjv8Bj7BvMU=</latexit><latexit sha1_base64="DjnTzvj+WHf+FaTftn84jpbOcCs=">AAACcnicbVDLSgMxFE3Hd31V3ekmWgQXUmZEUHAjuHGpaKvQKUMmc1uDmcyY3Ihl6C/5NW5c6Ff4AabjLGz1QsjhnHNzc0+cS2HQ999r3szs3PzC4lJ9eWV1bb2xsdkxmdUc2jyTmb6PmQEpFLRRoIT7XANLYwl38ePFWL97Bm1Epm5xmEMvZQMl+oIzdFTUuAyNTaNC0FAoejOiNnLwjIYSxlf7kIZPliX1KZeTnivjoDR26lGj6bf8suhfEFSgSaq6ijZqm2GScZuCQi6ZMd3Az7FXMI2CSxjVQ2sgZ/yRDaDroGIpmF5Rrjyi+45JaD/T7iikJfu7o2CpMcM0ds6U4YOZ1sbkf1rXYv+0VwiVWwTFfwb1raSY0XF+NBEaOMqhA4xr4f5K+QPTjKNLeWJK+XYOfGKT4sUqwbMEpliJL6jZyKUYTGf2F3SOWoHfCq6Pm+enVZ6LZIfskQMSkBNyTi7JFWkTTl7JG/kgn7Uvb9vb9arwvVrVs0Umyjv8Bj7BvMU=</latexit><latexit sha1_base64="DjnTzvj+WHf+FaTftn84jpbOcCs=">AAACcnicbVDLSgMxFE3Hd31V3ekmWgQXUmZEUHAjuHGpaKvQKUMmc1uDmcyY3Ihl6C/5NW5c6Ff4AabjLGz1QsjhnHNzc0+cS2HQ999r3szs3PzC4lJ9eWV1bb2xsdkxmdUc2jyTmb6PmQEpFLRRoIT7XANLYwl38ePFWL97Bm1Epm5xmEMvZQMl+oIzdFTUuAyNTaNC0FAoejOiNnLwjIYSxlf7kIZPliX1KZeTnivjoDR26lGj6bf8suhfEFSgSaq6ijZqm2GScZuCQi6ZMd3Az7FXMI2CSxjVQ2sgZ/yRDaDroGIpmF5Rrjyi+45JaD/T7iikJfu7o2CpMcM0ds6U4YOZ1sbkf1rXYv+0VwiVWwTFfwb1raSY0XF+NBEaOMqhA4xr4f5K+QPTjKNLeWJK+XYOfGKT4sUqwbMEpliJL6jZyKUYTGf2F3SOWoHfCq6Pm+enVZ6LZIfskQMSkBNyTi7JFWkTTl7JG/kgn7Uvb9vb9arwvVrVs0Umyjv8Bj7BvMU=</latexit><latexit sha1_base64="DjnTzvj+WHf+FaTftn84jpbOcCs=">AAACcnicbVDLSgMxFE3Hd31V3ekmWgQXUmZEUHAjuHGpaKvQKUMmc1uDmcyY3Ihl6C/5NW5c6Ff4AabjLGz1QsjhnHNzc0+cS2HQ999r3szs3PzC4lJ9eWV1bb2xsdkxmdUc2jyTmb6PmQEpFLRRoIT7XANLYwl38ePFWL97Bm1Epm5xmEMvZQMl+oIzdFTUuAyNTaNC0FAoejOiNnLwjIYSxlf7kIZPliX1KZeTnivjoDR26lGj6bf8suhfEFSgSaq6ijZqm2GScZuCQi6ZMd3Az7FXMI2CSxjVQ2sgZ/yRDaDroGIpmF5Rrjyi+45JaD/T7iikJfu7o2CpMcM0ds6U4YOZ1sbkf1rXYv+0VwiVWwTFfwb1raSY0XF+NBEaOMqhA4xr4f5K+QPTjKNLeWJK+XYOfGKT4sUqwbMEpliJL6jZyKUYTGf2F3SOWoHfCq6Pm+enVZ6LZIfskQMSkBNyTi7JFWkTTl7JG/kgn7Uvb9vb9arwvVrVs0Umyjv8Bj7BvMU=</latexit>

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Poly-time reductions

77

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-COLOR

HAM-CYCLE

SUBSET-
SUM

KNAPSACK

SET-COVER

numerical

constraint satisfaction

packing and covering sequencing partitioning

3-SAT poly-tim
e reduces

to INDEPENDENT-SET

Karp’s 20 poly-time reductions from satisfiability

78

Dick Karp (1972) 
1985 Turing Award

