A 5. DIVIDE AND CONQUER |

» mergesort

» Master Theorem

» randomized quicksort

» median and selection
RO DESHIL » counting inversions
JON KLEINBERG - EVA TARDOS » closest pair of points

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 10/5/24 10:45PM

http://www.cs.princeton.edu/~wayne/kleinberg-tardos
http://www.cs.princeton.edu/~wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Divide-and-conquer paradigm

Divide-and-conquer.
* Divide up problem into several subproblems (of the same kind).
* Solve (conquer) each subproblem recursively.
* Combine solutions to subproblems into overall solution.

Most common usage.
* Divide problem of size n into two subproblems of size n/2. «—— O(n) time
* Solve (conquer) two subproblems recursively.
* Combine two solutions into overall solution. <« O(n) time

Consequence.
* Brute force: O(n?).

0L DIVIDE

* Divide-and-conquer: O(n log n). ET IMPER A

attributed to Julius Caesar

Divide-and-conquer paradigm

Divide-and-conquer.

* Divide up problem into several subproblems (of the same kind).

Solve (conquer) each subproblem recursively.
Combine solutions to subproblems into overall solution.

Examples.

Mergesort and quicksort (sorting).

Quickhull and mergehull (convex hull). |
Shamos—Hoey algorithm (closest pair). D,
Median-of-medians algorithm (selection).

Strassen’s algorithm (matrix multiplication).

Karatsuba’s algorithm (integer multiplication).
Cooley—Tukey algorithm (fast Fourier transform).
Ramer—Douglas—Peucker algorithm (decimate a curve).

5. DIVIDE AND CONQUER

» mergesort

Algorithm Uesion

r\ JON KlEINBERG EVA TARDOS
\

\

SECTIONS 5.1-5.2

Sorting problem

Problem. Given a list L of n elements from a totally ordered universe, rearrange
them in ascending order.

13

Born In The U.S.A.
Bruce Springsteen

Name Artist A Time Album
12 ¥ Let It Be The Beatles 4:03 LetItBe
13 M Take My Breath Away BERLIN 4:13 Top Gun - Soundtrack
14 ¥ Circle Of Friends Better Than Ezra 3:27 Empire Records
15 @ Dancing With Myself Billy Idol 4:43 Don't Stop
16 ¥ Rebel Yell Billy Idol 4:49 Rebel Yell
17 ™ Piano Man Billy Joel 5:36 Greatest Hits Vol. 1
18 ¥ Pressure Billy Joel 3:16 Createst Hits, Vol. Il (1978 - 1985) (Disc 2)
19 M The Longest Time Billy Joel 3:36 Createst Hits, Vol. 11 (1978 - 1985) (Disc 2)
20 ¥ Atomic Blondie 3:50 Atomic: The Very Best Of Blondie
21 M Sunday Girl Blondie 3:15 Atomic: The Very Best Of Blondie
22 ¥ Call Me Blondie 3:33 Atomic: The Very Best Of Blondie
23 M Dreaming Blondie 3:06 Atomic: The Very Best Of Blondie
24 ¥ Hurricane Bob Dylan 8:32 Desire
25 M The Times They Are A-Changin' Bob Dylan 3:17 CGreatest Hits
26 & Livin' On A Prayer Bon Jovi 4:11 Cross Road
27 @ Beds Of Roses Bon Jovi 6:35 Cross Road
28 ¥ Runaway Bon Jovi 3:53 Cross Road
29 M Rasputin (Extended Mix) Boney M 5:50 Greatest Hits |
30 ¥ Have You Ever Seen The Rain Bonnie Tyler 4:10 Faster Than The Speed Of Night '
31 M Total Eclipse Of The Heart Bonnie Tyler 7:02 Faster Than The Speed Of Night
32 ¥ Straight From The Heart Bonnie Tyler 3:41 Faster Than The Speed Of Night
33 ™ Holding Out For A Hero Bonny Tyler 5:49 Meat Loaf And Friends
34 © Dancing In The Dark © Bruce Springsteen @ 4:05 Born In The U.S.A.
35 M Thunder Road Bruce Springsteen 4:51 Born To Run
36 ¥ Born To Run Bruce Springsteen 4:30 Born To Run
37 ™ Jungleland Bruce Springsteen 9:34 Born To Run
20 A Toiwnl Tiieanl Tiienl (Ta Ciineitlain Thhoa Dieds 2.C72 Coavenertr Mimanm Tha Cavnndrenrle INic~ O

Sorting applications

Obvious applications.
* Organize an MP3 library.
* Display Google PageRank results.
* List RSS news items in reverse chronological order.

Some problems become easier once elements are sorted.
* ldentify statistical outliers.
* Binary search in a database.
* Remove duplicates in a mailing list.

Non-obvious applications.
* Convex hull.

Closest pair of points.

Interval scheduling / interval partitioning.

Scheduling to minimize maximum lateness.

Minimum spanning trees (Kruskal’s algorithm).

Mergesort

* Recursively sort left half.
* Recursively sort right half.
* Merge two halves to make sorted whole.

First Draft
of a

Report on the
EDVAC

John von Neumann

input

sort left half

A G L O R

sort right half

merge results

A G H I L M O R S T

Merging

Goal. Combine two sorted lists A and B into a sorted whole C.
* Scan A and B from left to right.
* Compare a; and b,.
* If a; < bj, append a; to C (no larger than any remaining element in B).
* Ifa; > bj, append b;to C (smaller than every remaining element in A).

sorted list A sorted list B

merge to form sorted list C

2 3 7 10 11

Mergesort: implementation

Input. List L of n elements from a totally ordered universe.
Output. The n elements in ascending order.

MERGE-SORT(L)

IF (list L has one element)

RETURN L.

Divide the list into two halves A and B.
A < MERGE-SORT(A). «<—— T(n/?2)
B <= MERGE-SORT(B). «<—— T(n/2)
L < MERGE(A, B). «— O(n)

RETURN L.

Mergesort: proof of correctness

Proposition. Mergesort sorts any list of n elements.
Pf. [by strong induction on # |
* Base case: n=1.
* Inductive hypothesis: assume true for 1,2, ..., n—1.
* By inductive hypothesis, mergesort sorts both left and right halves.
* Merging operation combines two sorted lists into a sorted whole. =

10

A useful recurrence relation

Def. T(n) = max number of compares to mergesort a list of length ».

Recurrence.

2

0 itn =1
T(n) < <

 T(In/2]) + T([n/2]) + n ifn>1

N

between [n /2] and n — 1 compares

Solution. T (n) is O(n log, n).

Assorted proofs. We describe several ways to solve this recurrence.
Initially we assume n is a power of 2 and replace < with = in the recurrence.

11

Divide-and-conquer recurrence: recursion tree

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

| \

0 itn=1 assuming n

T(n) = is a power of 2
2T (n/2) + n ifn>1

\

T (n) n =n

T

T(n/?2) T(n/2) 2 (n/2) - n

N 7\

T(n/4) T(n/4) T(n/4) T(n/4) 4 (n/4) _

AV AV ATEYA

T(n/8) T(n/8) T(n/8) Tm/8 Tm/8) Twm/3) Tn/8 T(n/8Y) 8 (n/8) = n

T(n) =nlogan

12

Proof by induction

Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n logs n.

v

0 itn=1
T(n) = A

2T(n/2) + n ifn>1

Pf. [by induction on n]
* Base case: whenn=1,T(1)= 0=nlog n.
* Inductive hypothesis: assume 7(n) = nlog, n.
* Goal: show that T(2n) = 2n log, (2n).

recurrence

T(2n) 2T(n) +2n

inductive hypothesis —> = 2nlogan + 2n
= 2n(loga(2n)—1) +2n

2nlogx(2n). =

AN

assuming n
is a power of 2

13

Analysis of mergesort recurrence

Proposition. If T(n) satisfies the following recurrence, then T(n) < n [log:n].

(O itn=1

T(n) < 9

 T([n/2]) + T([n/2]) + n ifn>1

T no longer assuming »
is a power of 2

Pf. [by strong induction on n]
* Basecase: n=1.
* Define ny=|n/2]and n, =[n/2] and note that n = n; + n,.
* Induction step: assume true for 1,2, ... ,n—1.

T(n) < Tm)+Tn)+ n
inductive hypothesis —> =< nj |-10g2 n1-| + 12 |-10g2 nz-l + n

= ni [logz n2-| + 12 [logz nz] + n

= n[logan2| +n
< n([logan]-1) +n < logyo ng < [log,n| — 1
= n [logzn]. u /

— e o e — e - - - — —— — — — — — — — — — —

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.
* Can access the elements only through pairwise comparisons.
* All other operations (control, data movement, etc.) are free.

Cost model. Number of compares.

Q. Realistic model?

A1. Yes. Java, Python, C++, ...

A2. Yes. Mergesort, insertion sort, quicksort, heapsort, ...
A3. No. Bucket sort, radix sorts, ...

sort (* key=None, reverse=False)

This method sorts the list in place, using only < comparisons between items.
Exceptions are not suppressed - if any comparison operations fail, the entire
sort operation will fail (and the list will likely be left in a partially modified
state).

15

Comparison tree (for 3 distinct keys a, b, and ¢)

height of pruned tree =

worst-case number

code between compares

(e.g., sequence of exchanges)

b<c a<c

yes

no yes no

a<cC b<c

yes

yes

each reachable leaf corresponds to one (and only one) ordering;
exactly one reachable leaf for each possible ordering

16

Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

Pf. [information theoretic]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height / of pruned comparison tree.
* Binary tree of height 4 has < 2" leaves.
* n! different orderings = n! reachable leaves.

n! reachable leaves < 2" leaves

17

Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make Q(n log n)
compares in the worst-case.

Pf. [information theoretic]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height / of pruned comparison tree.
* Binary tree of height 4 has < 2" leaves.
* n! different orderings = n! reachable leaves.

2" > #reachable leaves = n !
— h = log (n))

>nloggn—n/In2 =

T

Stirling’s formula

Note. Lower bound can be extended to include randomized algorithms.

18

SHUFFLING A LINKED LIST

Problem. Given a singly linked list, rearrange its nodes uniformly at random.
Assumption. Access to a perfect random-number generator. N

all n! permutations
equally likely

Performance. O(n log n) time, O(log n) extra space.

L
input i

20 ——> 3 —> 4 —> L —> B —> T — jull

L
shuffled l

S —> G —> 286 ——> T —> Fbhb —> 4 — il

19

Merge-shuffling a linked list

L
input 2% ——> 3% —> 4 ——> S5 ——> 6 ——> T —— jull

A
shuffle
left 4% —> 3% —— 2% —— gy

B

shlffﬂe 7 —> B —3> B —> null
right

L
merge Qo —> 7 —> Sdb —> 3 —> G —> 286 —> il

Proposition. Assuming that the merge can be done in O(n) time,
algorithm shuffles a linked list in O(n log n) time using O(log n) extra space.

20

Merging two shuffled linked lists

Problem. Given two shuffled linked lists, created a shuffled linked list whole.

Ny =6 D% — > 4% — > B —> T —> 3% —> 5& —>

21

Merging two shuffled linked lists

Problem. Given two shuffled linked lists, created a shuffled linked list whole.

Ny =6 D% — > 4% — > B —> T —> 3% —> 5& —>

Solution. Choose first element from A with probability n:/ (n1 + n») ;
choose first element from B with probability n./ (n1 + n2); repeat.

L

|

null

22

Merging two shuffled linked lists

Problem. Given two shuffled linked lists, created a shuffled linked list whole.

f
hi=5 Qo ——> B ——> 7 ——> 3% ——> L& —— il
B
|
h> = 3 10 ——> 8B —> Qb —> 4l

Solution. Choose first element from A with probability n:/ (n1 + n») ;
choose first element from B with probability n./ (n1 + n2); repeat.

L

|

2% —> qull

23

Merging two shuffled linked lists

Problem. Given two shuffled linked lists, created a shuffled linked list whole.

A
|
ni1 =4 O ——> 7 —> 3 —> 5L —> 4yl
B
|
h> = 3 10 ——> 8B —> Qb —> 4l

Gilbert—Shannon—Reeds model

/

Solution. Choose first element from A with probability n:/ (n1 + n») ; ﬂ

©

choose first element from B with probability n./ (n1 + n2); repeat.

L

|

Qo —> 2 —> il

24

v DIVIDE AND CONQUER ||

CHARLES E. LEISERSON

RONALD L. RIVEST

\ CLIFFORD STEIN
o - —_

» Master Theorem

SECTIONS 4.4-4.6

Divide-and-conquer recurrences

Goal. Recipe for solving common divide-and-conquer recurrences:

n

T(n):aT(b

) + f(n)
with 7(0) =0 and 7(1) = ®(1).

Terms.
* a=1isthe number of subproblems.
* b =2is the factor by which the subproblem size decreases.
* f(n) =0 is the work to divide and combine subproblems.

Recursion tree. [assuming n is a power of b | o
* a = branching factor.
* a'=number of subproblems at level i.
* 1 +log, n levels. T(n/b) T(n/b) - Tn/b)

* n/b'=size of subproblem at level i. VAN /I /TN

26

Divide-and-conquer recurrences: recursion tree

Suppose T (n) satisfies T(n) = a T(n/ b) + n° with T (1) = 1, for n a power of b.

T (n)

T (n/b) T(n/b) T(n/b)

N N N

Tm/b> Twm/b>) Tn/b>» Tw/b%) Twm/b> Tn/b? Tn/b> Tml/b? Tnlb

Q) T(!l) T(!l) T(!l) T(!l) T(!l) T(!l) T(!l) T(!l) T(!l) T(!l) T(!l) T(!l)

alogbn — nlogba

r=a/be T(n):nCZri

1 +logyn

a(n/b)¢

a’ (n/b*¢

a' (n/b")¢

nlogb a

27

Divide-and-conquer recurrences: recursion tree analysis

Suppose T (n) satisfies T(n) = a T(n/ b) + n° with T (1) = 1, for n a power of b.

Let r=a/bc. Note that r < 1 iff ¢ > log; a.

 O(n°) if r <1
log, n |
T(n) = n° Z r' = ¢ O(nlogn) ifr=1
i=0
L O(nlogv) ifr > 1

Geometric series.
* fOo<r<l1, thenl+r+r?+r+...+r* <1/ -7).
* Ifr=1, then 1l +r+r*+r+...+7r" = k+1.

* Ifr>1, thenl+r+r?+r+...+rF =0+ =-1) /(r-1).

Divide-and-conquer recurrences: master theorem

Master theorem. Leta=>=1, b =2, and ¢ =0 and suppose that T'(n) is a
function on the non-negative integers that satisfies the recurrence

n

—) + O(n°)

T(n) = aT(b

with 7(0) = 0 and 7(1) = ©(1), where n/b means either | n/b| or [n/b]. Then,

Case 3. If ¢ >logpa, then T (n) = O(n°).
Case 2. If c =logpa, then T (n) = O(n¢ log n).
Case 1. If c <logpa, then T (n) = O(n'°%%).

Pf sketch.
* Prove when b is an integer and » is an exact power of b.
* Extend domain of recurrences to reals (or rationals).
* Deal with floors and Ceilings. <«—— at most 2 extra levels in recursion tree

[[[n/b]/b]/b]] < n/b%+ (1/b%> +1/b+1)
< n/b3—|—2

29

Divide-and-conquer recurrences: master theorem

Master theorem. Leta=>=1, b =2, and ¢ =0 and suppose that T'(n) is a
function on the non-negative integers that satisfies the recurrence

n

—) + O(n°)

T(n) = aT(b

with 7(0) = 0 and 7(1) = ©(1), where n/b means either | n/b| or [n/b]. Then,

Case 3. If ¢ >logpa, then T (n) = O(n°).
Case 2. If c =logpa, then T (n) = O(n¢ log n).
Case 1. If c <logpa, then T (n) = O(n'°%%).

Extensions.
* Can replace © with O everywhere.
* Can replace © with €2 everywhere.
* Can replace initial conditions with T(n) = ©(1) for all n < no and
require recurrence to hold only for all n > no.

30

Divide-and-conquer recurrences: master theorem

Master theorem. Leta=>=1, b =2, and ¢ =0 and suppose that T'(n) is a
function on the non-negative integers that satisfies the recurrence

n

—) + O(n°)

T(n) = aT(b

with 7(0) = 0 and 7(1) = ©(1), where n/b means either | n/b| or [n/b]. Then,

Case 3. If ¢ >logpa, then T (n) = O(n°).
Case 2. If c =logpa, then T (n) = O(n¢ log n).
Case 1. If c <logpa, then T (n) = O(n'°%%).

Ex. [Case 1] T(n)=3T(n/2])+5n.
*a=3,b=2,c=1<log,a=1.5849....
o T(I’l) — @(nlogz?)) — O(n1.58)_

31

Divide-and-conquer recurrences: master theorem

Master theorem. Leta=>=1, b =2, and ¢ =0 and suppose that T'(n) is a
function on the non-negative integers that satisfies the recurrence

n

—) + O(n°)

T(n) = aT(b

with 7(0) = 0 and 7(1) = ©(1), where n/b means either | n/b| or [n/b]. Then,

Case 3. If ¢ >logpa, then T (n) = O(n°).
Case 2. If c =logpa, then T (n) = O(n¢ log n).
Case 1. If c <logpa, then T (n) = O(n'°%%).

ok to intermix floor and ceiling

O\
Ex. [Case 2] Tm)=T(|n/2]) +T(n/2])+ 17n.
*a=2,b=2,c=1=log,a.
* T(n)=0O(nlogn).

32

Divide-and-conquer recurrences: master theorem

Master theorem. Leta=>=1, b =2, and ¢ =0 and suppose that T'(n) is a
function on the non-negative integers that satisfies the recurrence

n

—) + O(n°)

T(n) = aT(b

with 7(0) = 0 and 7(1) = ©(1), where n/b means either | n/b| or [n/b]. Then,

Case 3. If ¢ >logpa, then T (n) = O(n°).
Case 2. If c =logpa, then T (n) = O(n¢ log n).
Case 1. If c <logpa, then T (n) = O(n'°%%).

Ex. [Case 3] T(n)=48T(|n/4)|) +n’.
* a=48, b=4,c=3> log,a = 2.7924....
* T(n)=0Om).

33

Master theorem need not apply

Gaps in master theorem.

* Number of subproblems is not a constant.

T(n) =@T(n/2) + n?

* Number of subproblems is less than 1.

T(n) = T(n/2) + n?

* Work to divide and combine subproblems is not ©O(n°).

T(n) = 2T (n/2) —I—

34

Geometric series

Fact1. If r#1, then 14+r+r2 4934 ppk 1 —
Fact 2. If r=1, then l+r+r24+r3+.. . 401 = &

Fact 3. If [r| < 1, then l+r4+r24r34+... =

1+1/2 +1/4+1/8+ ...=2

Case 1: total cost dominated by cost of leaves

Ex 1. If T(n) satisfies T(n)=3T(n/2)+n,With T(1)=1,thenT(n) = ©(n'°23)
T (n))
T(n/2) T(n/2) T(n/2) 3(n/2)
I N TN
T(7s{‘4) T(t15<4) T(n/4) T({"li{‘4) T(f15<4) T(n/4) T(ili{‘4) T(f15<4) T(n/4) 3% (n /2%
1+logan 3i(n/2)
T(;l) T(;l) T(;l) T(;l) T(;l) T(;l) T(;l) T(;l) T(;l) T(;l) T(;l) T(;l) T(;l) L glosan(y /glomn)

310g2 n __ nlogz 3

1—|—10g2n_1
r=3/2>1 Tm)=QQ+r+r2+r34. . trlosen)yy =" —n = 3plo823 _ o
/"’_

36

Case 2: total cost evenly distributed among levels

Ex 2. If T(n) satisties T(n)=2T(n/2)+ n,with T(1) =1, then T (n) = O(n log n).

T (n)

/ \ '
T(n/2) T(n/2) 2(nl2)
T(n/4) T(n/4) T(n/4) T(n/4) 02 (n/22)
/ \ / \ / \ / \ 1 +logon
T(n/8) Tm/8) Tn/8) T(n/3) T(n/8) Tm/8) Tn/8) T(n/3) 23 (n/23)
T() T(1) T(1) T(1) T(1) T() T(1) T(D) T(1) T(A) =+ T(1) T(D) T(1) 1 (D)
210g2n —n

r=1 Tn)=Q+r+r*+rP+...+7°%2")n = n(logrn+1)

37

Case 3: total cost dominated by cost of root

Ex 3. If T(n) satisfies T(n)=3T(n/4) + r’, with T(1) =1, then T (n) = O(n°).

T (n) .
T(n/4) T(n/4) T(n/4) 3 (n/4)3
T(n/16) T(n/16) T(n/16) Tn/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) 32 (n / 42)’

I +logsn 3 (n /4%°

T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) === T(1) T(1) T(1) + 3o8an(y, /qionn)s

3log4 n __ nlog4 3

r=3/4<1 mw<Th <(+r+r’+r+...)n < T
— 38

Master theorem (divide-and-conquer)

Master theorem. Suppose that T'(n) is a function on the non-negative integers that
satisfies the recurrence

n

=) + f(n)

with 7(0) =0 and 7(1) = ©(1), where n/b means either | n/b| or [n/b]. Then,

Iwn:aT(

Case 1. If f(n) = O(n'°#~¢) for some constant ¢ > 0, then T (n) = O(n'°2).

EX. T(n)=3T(n/2)+5n.
*a=3,b=2, logoa=1.38..., f(n)=5n, € =0.58.
. T(I’l) — @(nlogba) — @(n10g23)_

39

Master theorem (divide-and-conquer)

Master theorem. Suppose that T'(n) is a function on the non-negative integers that
satisfies the recurrence

n

=) + f(n)

with 7(0) =0 and 7(1) = ©(1), where n/b means either | n/b| or [n/b]. Then,

Iwn:aT(

Case 2. If f(n) = O(n'°%%), then T (n) = O(n'°%* log n).

Ex. T(n)=2T(n/2])+ 17n.
*a=2,b=2, logra=1, f(n)=17n.
* T(n)=0O(nlogn).

40

Master theorem (divide-and-conquer)

Master theorem. Suppose that T'(n) is a function on the non-negative integers that
satisfies the recurrence
n

T(n):aT(b) + f(n)

with 7(0) =0 and 7(1) = ©(1), where n/b means either | n/b| or [n/b]. Then,

Case 3. If f(n) = Q(n'°%4*+¢) for some constant ¢ >0, and if a f(n/ b) < c¢ f(n) for some
constant ¢ < 1 and all sufficiently large n, then T'(n) = O (f(n)). \
“regularity condition”
holds if () = O (nk)
Ex. Tm)=3Tn/4) +n’.
* a=3,b=4, log,a=0.7924..., f(n) =nr.
* Regularity condition: 3(n/4)’ < cn’forc=3/4><1.
* T(n)=0(f(n)=0(m).

41

Master theorem (divide-and-conquer)

Master theorem. Suppose that T'(n) is a function on the non-negative integers that
satisfies the recurrence

n

=) + f(n)

with 7(0) = 0 and 7(1) = ©(1), where n/b means either | n/b| or [n/b]. Then,

Iwn:aT(

Case 1. If f(n) = O(n'°%~¢) for some constant ¢ > 0, then T (n) = O(n'°%).
Case 2. If f(n) = O(n'°%%), then T (n) = O(n'°%* log n).

Case 3. If f(n) = Q(n'°%4*+) for some constant ¢ >0, and if af(n/b) <cf(n)
for some constant ¢ < 1 and all sufficiently large n, then T (n) = © (f(n)).

Pf sketch.
* Use recursion tree to sum up terms (assuming » is an exact power of b).
* Three cases for geometric series.
* Deal with floors and Ceilings_ <«—— at most 2 extra levels in recursion tree

42

Divide-and-conquer Il: quiz 1 s

Consider the following recurrence. Which case of the master theorem?

O(1) ifn=1
T(n) = «

 3T([n/2]) + ©(n) ifn>1

Case 3: T(n) = O(n).
Case 2: T(n) = O(n log n).

Case 1: T(n) = O(n'°%2%) = O(n'>®).

c n w »

Master theorem not applicable.

43

Divide-and-conquer Il: quiz 2 s

Consider the following recurrence. Which case of the master theorem?

o N w »

0 ifn<i
T'(n) = <

 T([n/5])+T(n—3[n/10])+ Fn ifn>1

Case 1: T(n) = O(n).
Case 2: T(n) = O(n log n).
Case 3: T(n) = O(n).

Master theorem not applicable.

44

Master theorem need not apply

Gaps in master theorem.
* Number of subproblems is not a constant.

T(n) =T (n/2) + n?

Number of subproblems is less than 1.

T(n) = T(n/2) + n?

T(n) = 2T(n/2) —I—

f(n) 1s not positive.

T(n) = 2T(n/2)

Regularity condition does not hold.

T(n) = T(n/2) +(n(2 - cosn))

No polynomial separation between f(n) and n'°#~“.

45

Akra-Bazzi theorem

Theorem. [Akra—Bazzi 1998] Given constants a;>0and 0<b; < 1,
functions | k; (n)| = O(n / log® n) and g(n) = O(n°). If T(n) satisfies the recurrence:

T(n) = Z a; T (bin + hi(n)) + g(n)

NN

a; subproblems small perturbation to handle
of size bin floors and ceilings

k

then, Tn)= © (np (1 +/ i) du)> where p satisfies Zai bl =1
1

p+1
u i

Ex. T(n) = T(|n/5]) + T(n—3|n/10]) + 11/5 n, with 7T(0) = 0 and T(1) = 0.
*ar=1, b1=1/5, ax=1, bp=7/10 = p=0.83978... <1.
* mi(n)= |n/5]-n/5, ho(n) = 3/10n — 3|n/10].
* g(n)=11/5n = T(n)= O).

46

Divide-and-conquer Il: quiz 3 o

Consider the following recurrence. Which case of the master theorem?

o N w »

0 ifn<i
T'(n) = <

 T([n/5])+T(n—3[n/10])+ Fn ifn>1

Case 1: T(n) = O(n).
Case 2: T(n) = O(n log n).
Case 3: T(n) = O(n).

Master theorem not applicable.

47

Recurrence Relation of Quickselect

What is the recurrence relation of Quickselect?

48

Recurrence Relation of Quickselect

What is the recurrence relation of Quickselect?

* Master Theorem:
n

T(n):aT(b) + f(n)

49

Recurrence Relation of Quickselect

What is the recurrence relation of Quickselect?

* Master Theorem:
n

T(n):aT(b) + f(n)

a is the number of subproblems

b is the factor by which the subproblem size decreases

f(n) is the work to divide and combine subproblems
- r=al b¢

c ?logya

50

Recurrence Relation of Quickselect

What is the recurrence relation of Quickselect?

* Master Theorem:
n

T(n):aT(b) + f(n)

a is the number of subproblems = 1

b is the factor by which the subproblem size decreases = 2
f(n) is the work to divide and combine subproblems = ®(n¢)

- c=1

- r=alb‘=1/2'=1/2
c ?logya

1 ?log21

1?70

1>0

51

Recurrence Relation of Quickselect

What is the recurrence relation of Quickselect?

* Master Theorem:
n

T(n):aT(b) + f(n)

a is the number of subproblems = 1

b is the factor by which the subproblem size decreases = 2

f(n) is the work to divide and combine subproblems = ®(n¢)
- c=1
- r=al/b‘=1/2'=1/2;
- ¢ ?logpa
1 ?log21
1?70
1>0
- Case 3. |If ¢>logya, then T'(n) = O(n°).
- Case 2. If c=logya, then T'(n) = O(n° log n).
- Case 1. If c<logpa, then T'(n) = O(n'°&%)

52

Recurrence Relation of Quickselect

What is the recurrence relation of Quickselect?

* Master Theorem:
n

T(n):aT(b) + f(n)

a is the number of subproblems = 1

b is the factor by which the subproblem size decreases = 2

f(n) is the work to divide and combine subproblems = ®(n¢)
- c=1
- r=al/b‘=1/2'=1/2;
- ¢ ?logpa
1 ?log21
1?20
1>0
- Case 3. If c>logya,then T (n) = O(n°)
- Case 2. If c=logya, then T'(n) = O(n° log n).
- Case 1. If c<logpa, then T'(n) = O(n'°&%)

53

Recurrence Relation of Quickselect

What is the recurrence relation of Quickselect?

* Master Theorem:

n

T(n):aT(b) + f(n)

a is the number of subproblems = 1

b is the factor by which the subproblem size decreases = 2
f(n) is the work to divide and combine subproblems = ®(n¢)
c=1

r=alb<=1/2'=1/2;

c ?logya

1 ?log21

120

1>0

Case 3. If c>logya, then T (n) = O(n¢) = O(n')

Case 2. If c =logpa, then T (n) = O(n log n).

Case 1. If ¢ <logya, then T (n) = O(n'°&4)

54

Recurrence Relation of Quickselect

What is the recurrence relation of Quickselect?

* Master Theorem:

n

T(n):aT(b) + f(n)

a is the number of subproblems = 1

b is the factor by which the subproblem size decreases = 2
f(n) is the work to divide and combine subproblems = ®(n¢)
c=1

r=alb<=1/2'=1/2;

c ?logya

1 ?log21

120

1>0

Case 3. If c>logya,then T (n) = O(n¢) = O(n') = O(n)
Case 2. If c =logpa, then T (n) = O(n log n).

Case 1. If ¢ <logya, then T (n) = O(n'°&4)

55

o 5. DIvIDE AND CONQUER

CHARLES E. LEISERSON

RONALD L. RIVEST

\ CLIFFORD STEIN
- - N - \"p —

» median and selection

SECTION 9.3

Median and selection problems

Selection. Given n elements from a totally ordered universe, find kth smallest.
* Minimum: k=1; maximum: k = n.

Median: k=|(n+1)/2].

O(n) compares for min or max.

O(n log n) compares by sorting.

O(n log k) compares with a binary heap. <«— max heap with k smallest

Applications. Order statistics; find the “top k”; bottleneck paths, ...

Q. Can we do it with O(n) compares?
A. Yes! Selection is easier than sorting.

57

Randomized quickselect

* Pick a random pivot element p € A.
* 3-way partition the array into L, M, and R.
* Recur in one subarray—the one containing the kth smallest element.

QUICK-SELECT(A, k)

Pick pivot p € A uniformly at random.

(L, M, R) < PARTITION-3-WAY(A, p). «— O(n)

IF (k < ILI) RETURN QUICK-SELECT(L, k). <«—— T(i)

ELSEIF (k >|LI+I1MI) RETURN QUICK-SELECT(R, k—ILI—=IM|) <«— T(n-i-1)

ELSE RETURN p.

58

Randomized quickselect analysis

Intuition. Split candy bar uniformly = expected size of larger piece is 3.

T(n) < TBn/4) +n = T(n) < 4n

not rigorous: can’t assume
E[7()] = T(E[])

Def. T(n, k) = expected # compares to select kth smallest in array of length < n.
Def. T(n) = maxk T(n, k).

Proposition. T(n) < 4n.

Pf. [by strong induction on # |
can assume we always recur of
 Assume true for 1.2 n—1 larger of two subarrays since T(n)
> T ' is monotone non-decreasing
* T(n) satisfies the following recurrence: /

Tn) < n +1/n[2Tn/2) + ... + 2T(n=3) + 2T(n—2) + 2T(n— 1)]

<n+1/n[8n/D+...+8n-3)+8n-2)+8(n-1)]
n n n n n n \

<n+1/n (3n2) inductive hypothesis

— 45 =
n tiny cheat: sum should start at 7(| n/2)

59

Selection in worst-case linear time

Goal. Find pivot element p that divides list of n elements into two pieces so that
each piece is guaranteed to have < 7/10 n elements.

Q. How to find approximate median in linear time?
A. Recursively compute median of sample of < 2/10 n elements.

T(7/10n) + T (2/10 n) + O(n) otherwise

\

two subproblems

O(1 ifn=1
T(n)={ (1) 1f n

of different sizes!

= T(n) = O(n)

we’ll need to show this

60

ng the pivot element

Choosi

| groups of 5 elements each (plus extra).

* Divide n elements into |n

ORONCONC

ONORONONG
DEORORONC)
ONORONONG
P0G
ONONONONCOR
ONONCONCNC)
ONONCONCONC
ONONONCONC)
OEORONONC)
ONCORCONCNC

Choosing the pivot element

* Divide n elements into |n /5| groups of 5 elements each (plus extra).
* Find median of each group (except extra).

medians

o o

n =54

62

Choosing the pivot element

Divide n elements into |n / 5| groups of 5 elements each (plus extra).

Find median of each group (except extra).

Find median of |n / 5| medians recursively.

Use median-of-medians as pivot element.

medians

median Of /
medians @ ° @

h = 54

63

Median-of-medians selection algorithm

MOM-SELECT(A, k)

n<I1AI.
IF (n < 50)

RETURN £kth smallest of element of A via mergesort.

Group A into |n / 5] groups of 5 elements each (ignore leftovers).
B <— median of each group of 5.

p <= MOM-SELECT(B, [n/ IOJ) <€— median of medians

64

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.

D060 0
S
N @ s
00606

©O0O00O O

n =54

3

@060

3
@
Q
o
S
o

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.
* Atleast||n/5]|/2]=|n/10] medians < p.

OO E
®PPOOE

0000 ®

@060

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.
* Atleast||n/5]/2|=|n/10]| medians < p.
* Atleast3|[n/10] elements < p.

medians < p

median of
medians p

n =54

67

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians = p.

D060 0
S
®»EPOE
00606

©O0O00O O

n =54

3

@060

3
@
Q
o
S
o

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians = p.
* Atleast||n/5]/2|=|n/10]| medians = p.

@006 E
S

®»EPOE
00606

3
@
Q

3

@060

v
An]

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians = p.
* Atleast||n/5]/2|=|n/10]| medians = p.
* Atleast3|[n/10] elements = p.

medians = p

median of
medians p

h = 54 -0

Median-of-medians selection algorithm recurrence

Median-of-medians selection algorithm recurrence.
* Select called recursively with |n /5] elements to compute MOM p.
* Atleast3|[n/10] elements < p.
* Atleast3|n/ 10| elements = p.
* Select called recursively with at most n —3 |n/ 10| elements.

Def. C(n) = max # compares on any array of n elements.

C(n) < C(|n/5]) + C(n—3[n/10]) + £n

median of recursive computing median of 5
medians select (< 6 compares per group)

partitioning
(= n compares)

Intuition.
* C(n) is going to be at least linear in n = C(n) is super-additive.
* Ignoring floors, this implies that C(n) =< C(n/5+n-3n/10)+11/5n
= CO9n/10)+ 11/5n
= C(n) < 22n.

71

Median-of-medians selection algorithm recurrence

Median-of-medians selection algorithm recurrence.
* Select called recursively with |n /5] elements to compute MOM p.
* Atleast3|[n/10] elements < p.
* Atleast3|n/ 10| elements = p.
* Select called recursively with at most n —3 |n/ 10| elements.

Def. C(n) = max # compares on any array of n elements.

C(n) < C(|n/5]) + C(n—3[n/10]) + £n

median of recursive computing median of 5

medians select (< 6 compares per group)

partitioning
(= n compares)

Now, let’s solve given recurrence.
* Assume n is both a power of 5 and a power of 10 ?
* Prove that C(n) is monotone non-decreasing.

72

Divide-and-conquer: quiz 4

Consider the following recurrence

(0
C(n) = <

L C(In/5]) + C(n —3|n/10]) + Ln
Is C(n) monotone non-decreasing?
Yes, obviously.

Yes, but proof is tedious.

Yes, but proof is hard.

o N w »

No.

itn <1

itn >1

73

Median-of-medians selection algorithm recurrence

Analysis of selection algorithm recurrence.
* T(n) = max # compares on any array of < n elements.
* T(n) iIs monotone non-decreasing, but C(n) is not!

(6n if n < 50
T(n) < <

| max{ T'(n — 1), T(|n/5]) + T(n — 3|n/10]) + £n) } ifn>50

Claim. T(n) < 44n.
Pf. [by strong induction]
* Base case: T(n) < 6nforn < 50 (mergesort).
* Inductive hypothesis: assume true for1,2,...,n— 1.
* Induction step: forn = 50, we have either T(n) < T(n—-1) < 44n or

T(n) < T(n/5])) + Tn-=3|n/10))+ 11/5n

nductive -, < 44 (|n/5]) + 44 (n -3 |n/10]) + 11/5n
hypothesis

IA

44 (n/S5) + 4n-44(n/4)+ 11/5n <«<—— for n=50, 3|n/10| = n/4
4 n. =

74

Divide-and-conquer: quiz 5 >

Suppose that we divide n elements into |n/r| groups of r elements each,
and use the median-of-medians of these |n/r| groups as the pivot.
For which r is the worst-case running time of select O(n) ?

A. r=3

B. r=7
C. Both A and B.

D. Neither A nor B.

75

Lineartime selection retrospective

Proposition. [Blum—Floyd—Pratt—Rivest—Tarjan 1973] There exists a compare-
based selection algorithm whose worst-case running time is O(n).

Time Bounds for Selection™

ManveL BrLum, RoBerT W. FLOoYD, VAUGHAN PraTT,
RonaLp L. Rivest, AND RoBERT E. TaRrjAN

Department of Computer Science, Stanford University, Stanford, California 94305
Received November 14, 1972

The number of comparisons required to select the i-th smallest of # numbers is shown
to be at most a linear function of » by analysis of a new selection algorithm—PICK.
Specifically, no more than 54305 n comparisons are ever required. This bound is
improved for extreme values of 7, and a new lower bound on the requisite number
of comparisons is also proved.

Theory.
* Optimized version of BFPRT: < 5.4305 n compares.
* Upper bound: [Dor—Zwick 1995] < 2.95 n compares.
* Lower bound: [Dor—Zwick 1999] = (2 + 2-89) n compares.

Practice. BFPRT constants too large to be useful.

5. DIVIDE AND CONQUER

Alg h[ﬂ Bblgﬂ » counting inversions

r\ JON KLEINBERG - EVA TARDOS
\

SECTION 5.3

Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.

* Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
* Myrank: 1,2,...,n.
* Yourrank: ag,a,, ..., a,.

* Songs i and are inverted if i < j, buta; > a;

e lclol e
1 2 3 4)

1 3 4 2 5

2 inversions: 3-2,4-2

Brute force: check all ®(n?) pairs.

78

Counting inversions: applications

* Voting theory.

* Collaborative filtering.

* Measuring the “sortedness” of an array.

* Sensitivity analysis of Google’s ranking function.

* Rank aggregation for meta-searching on the Web.

* Nonparametric statistics (e.g., Kendall’s tau distance).

Rank Aggregation Methods for the Web

Cynthia Dwork* Ravi Kumarf Moni Naor? D. Sivakumar?

ABSTRACT

We consider the problem of combining ranking results from
various sources. In the context of the Web, the main ap-
plications include building meta-search engines, combining
ranking functions, selecting documents based on multiple
criteria, and improving search precision through word asso-
ciations. We develop a set of techniques for the rank aggre-
gation problem and compare their performance to that of
well-known methods. A primary goal of our work is to de-
sign rank aggregation techniques that can effectively combat
“spam,” a serious problem in Web searches. Experiments
show that our methods are simple, efficient, and effective.

Keywords: rank aggregation, ranking functions, meta-
search, multi-word queries, spam

79

Counting inversions: divide-and-conquer

Divide: separate list into two halves A and B.

Conquer: recursively count inversions in each list.

Combine: count inversions (a, b) with a € A and b € B.

Return sum of three counts.

input

1 5 4 8 10 2 6 9 3 7

count inversions in left half A count inversions in right half B
1 5 4 8 10 2 6 9 3 7
5-4 6-3 9-3 9-7

count inversions (a, b) witha e Aand b € B

1 5 4 8 10 2 6 9 3 7

4-2 4-3 5-2 5-3 8-2 8-3 8-6 8-7 10-2 10-3 10-6 10-7 10-9

outputl1 + 3 + 13 =17

80

Counting inversions: how to combine two subproblems?

Q. How to count inversions (a, b) with a € A and b € B?
A. Easy if A and B are sorted!

Warmup algorithm.
* Sort A and B.
* For each element b € B,
- binary search in A to find how elements in A are greater than b.

list A list B

7 10 18 3 14 20 23 2 11 16
sort A sort B

3 7 10 14 18 2 11 16 20 23

binary search to count inversions (a, b) withac< Aand b ¢ B

3 7 10 14 18 2 11 16 20 23

5 2 1 0 0

Counting inversions: how to combine two subproblems?

Count inversions (a, b) with a € A and b € B, assuming A and B are sorted.

* Scan A and B from left to right.
* Compare a; and b,.

If a; < b;, then qa; is not inverted with any element left in B.

If a; > bj, then b; is inverted with every element left in A.
* Append smaller element to sorted list C.

count inversions (a, b) witha e Aand b € B

a; 18 bj 20 23

1 s 2 4

merge to form sorted list C

2 3 7 10 11

82

Counting inversions: divide-and-conquer algorithm implementation

Input. List L.
Output. Number of inversions in L and L in sorted order.

SORT-AND-COUNT(L)

IF (list L has one element)

RETURN (0, L).

Divide the list into two halves A and B.
(ra, A) <= SORT-AND-COUNT(A). «— T(n/?2)
(rg, B) <= SORT-AND-COUNT(B). «— T(n/2)

(rap, L) <= MERGE-AND-COUNT(A, B). «<—— O(n)

RETURN (ra + 7B + raB, L).

83

Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions in a
permutation of size n in O(n log n) time.

Pf. The worst-case running time 7(n) satisfies the recurrence:

O(1) ifn=1

 T(In/2]) + T(In/2]) + O(n) ifn>1

84

5. DIVIDE AND CONQUER

Alg i Design

r\ JON KLEINBERG - EVA TARDOS » closest pair of points
\

SECTION 5.4

Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points
with the smallest Euclidean distance between them.

Fundamental geometric primitive.
* Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.

* Special case of nearest neighbor, Euclidean MST, Voronoi.

N _
—

fast closest pair inspired fast algorithms for these problems

86

Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points
with the smallest Euclidean distance between them.

Brute force. Check all pairs with ®(n?2) distance calculations.

1D version. Easy O(n log n) algorithm if points are on a line.

Non-degeneracy assumption. No two points have the same x-coordinate.

Closest pair of points: first attempt

Sorting solution.

* Sort by x-coordinate and consider nearby points.
* Sort by y-coordinate and consider nearby points.

88

Closest pair of points: first attempt

Sorting solution.
* Sort by x-coordinate and consider nearby points.
* Sort by y-coordinate and consider nearby points.

89

Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants.

90

Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

91

Closest pair of points: divide-and-conquer algorithm

Divide: draw vertical line L so that n/2 points on each side.

Conquer: find closest pair in each side recursively.

Combine: find closest pair with one point in each side.

Return best of 3 solutions.

AN

seems like O(n?)

92

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 6.

* Observation: suffices to consider only those points within & of line L.

e o
° o
® o
o
. /s
® o
O —
0 =min(12, 21)
o o T T
o
o

93

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 6.

* Observation: suffices to consider only those points within & of line L.

* Sort points in 2 §-strip by their y-coordinate.

* Check distances of only those points within 7 positions in sorted list!

whwv?

o5

® o ®
o
® ®
e ——
0 =min(12, 21)
O . """""""""
o

94

How to find closest pair with one point in each side?

Def. Let s; be the point in the 2 o-strip, with the i* smallest y-coordinate.

Claim. If |j-i| > 7, then the distance between L
s; and s; is at least o.

Pf.
* Consider the 26-by-0 rectangle R in strip ij
whose min y-coordinate is y-coordinate of s,.

- Distance between s; and any point s; | : I |
. R | 149
above R is = 0. | | . |
o _ diameter of square is O |=-°- I L |
* Subdivide R into 8 squares. §/V2 <4 | i i 158
* At most 1 point per square. s O |- |

At most 7 points other than s; can be in R. =

\

constant can be improved with more

refined geometric packing argument

20

95

Closest pair of points: divide-and-conquer algorithm

CLOSEST-PAIR(p1, p2, ..., Pn)

Compute vertical line L such that half the points «—

are on each side of the line.

01 <— CLOSEST-PAIR(points in left half). —

02 <— CLOSEST-PAIR(points in right half). —

0 emin{él,éz}.

A < list of all points closer than O to line L. —

Sort points in A by y-coordinate. D E—

Scan points in A in y-order and compare distance

between each point and next 7 neighbors. «—

If any of these distances is less than 0, update 0.

RETURN 0.

O(n)

T([n/2))

T([n/2])

O(n)

O(n log n)

O(n)

96

Divide-and-conquer: quiz 6

What is the solution to the following recurrence?

o(1)
T(n) =

 T([n/2]) + T([n/2]) + O(nlogn)

T(n) = O(n).
T(n) = O(nlog n).

T(n) = O(nlog2n).

o N v »

T(n) = On?).

itn=1

itn >1

97

Refined version of closest-pair algorithm

Q. How to improve to O(n log n) ?
A. Don’t sort points in strip from scratch each time.

* Each recursive call returns two lists: all points sorted by x-coordinate,
and all points sorted by y-coordinate.

* Sort by merging two pre-sorted lists.

Theorem. [Shamos 1975] The divide-and-conquer algorithm for finding a closest
pair of points in the plane can be implemented in O(n log n) time.

O(1) ifn=1

 T([n/2]) + T([n/2]) + O(n) ifn>1

i T(n) =«

THE NEW
TEXTS. [LLUSTRATED ENCYCLOPEDIA OF
AL ey BILLIARDS
GEOMETRY

COMPLETELY REVISED AND UPDATED

AN INTRODUCTION

Wichael i Shamos

98

Divide-and-conquer: quiz 7

What is the complexity of the 2D closest pair problem?

A. O(n).

B. O log*n).

C. O(nloglog n).

D. O(nlog n).

E. Not even Tarjan knows.

99

Computational complexity of closest-pair problem

Theorem. [Ben-Or 1983, Yao 1989] In quadratic decision tree model, any algorithm
for closest pair (even in 1D) requires Q(n log n) quadratic tests.

AN

(x1 - x2)2 + (y1 - y2)?

Lower Bounds for Algebraic Computation Trees

with Integer Inputs®

Andrew Chi-Chih Yao
Department of Computer Science
Princeton University

Princeton, New Jersey 08544

Theorem. [Rabin 1976] There exists an algorithm to find the closest pair of points
In the plane whose expected running time is O(n).

A NOTE ON RABIN’S NEAREST-NEIGHBOR ALGORITHM * not subject to C2(n log n) lower bound

because it uses the floor function
Steve FORTUNE and John HOPCROFT

Department of Computer Science, Cornell University, Ithaca, NY, U.S.A.

Received 20 July 1978, revised version received 21 August 1978

Probabilistic algorithms, nearest neighbor, hashing

100

Digression: computational geometry

Ingenious divide-and-conquer algorithms for core geometric problems.

closest pair O(n?)
farthest pair O(n?)
convex hull O(n?)
Delaunay/Voronoi O(n*)
Euclidean MST O(n?)

O(n log n)
O(n log n)
O(n log n)
O(n log n)

O(n log n)

running time to solve a 2D problem with n points

Note. 3D and higher dimensions test limits of our ingenuity.

Computational
Geometry

COMPUTATIONAL
GEOMETRY N [C]

NG

101

Convex hull

The convex hull of a set of n points is the smallest perimeter fence
enclosing the points.

Equivalent definitions.
* Smallest area convex polygon enclosing the points.
* Intersection of all convex set containing all the points.

102

Farthest pair

Given n points in the plane, find a pair of points with the largest Euclidean distance
between them.

-
//
//
7 o o :
1
/ !
1
:
1
o o |
1
1
1
[] o [) |
1
1
o o :
° °® |
o :
\ 1
\ 1
\\.- PS) |

Fact. Points in farthest pair are extreme points on convex hull.

103

Delaunay triangulation

The Delaunay triangulation is a triangulation of n points in the plane
such that no point is inside the circumcircle of any triangle.

no point in the set is

inside the circumcircle

point inside circumcircle
of 3 points

Delaunay triangulation of 19 points

Some useful properties.
* No edges cross.
* Among all triangulations, it maximizes the minimum angle.
* Contains an edge between each point and its nearest neighbor.

104

Euclidean MST

Given n points in the plane, find MST connecting them.
[distances between point pairs are Euclidean distances]

Fact. Euclidean MST is subgraph of Delaunay triangulation.
Implication. Can compute Euclidean MST in O(n log n) time.
* Compute Delaunay triangulation.

it’s planar

* Compute MST of Delaunay triangulation. S (B el

105

Computational geometry applications

Applications.
* Robotics.
* VLSI design.
* Data mining.
* Medical imaging.
* Computer vision.

* Scientific computing.

airflow around an aircraft wing

* Finite-element meshing.

* Astronomical simulation.

* Models of physical world.

* Geographic information systems.

* Computer graphics (movies, games, virtual reality).

http:/ /www.ics.uci.edu/~eppstein/geom.html

106

5. DIVIDE AND CONQUER

: Alg i Design
r\ JON KLEINBERG - EVA TARDOS

» integer multiplication

SECTION 5.5

Integer addition and subtraction

Addition. Given two n-bit integers a and b, compute a + b.
Subtraction. Given two n-bit integers a and b, compute a — b.

) : . . “bit complexity”
Grade-school algorithm. ©(n) bit operations. < (instead of word RAM)

Remark. Grade-school addition and subtraction algorithms are optimal.

108

Integer multiplication

Multiplication. Given two n-bit integers a and b, compute a x b.
Grade-school algorithm (long multiplication). ©(n2) bit operations.

i 1. 0 1 0 1 0 1
X011 1 1 1 0 1
i1 0 1 0 1 0 1
O 0 0O 0O 00O OO
i1 0 1 0 1 O
i1 0 1 0 1 0 1
i1 0 1 0 1 0 1
i1 0 1 0 1 0 1
i1 0 1 0 1 0 1
O 0o 0 0O 0O 0O 0O O

o1 101 0 0O OO OOOTGOO O 1

Conjecture. [Kolmogorov 1956] Grade-school algorithm is optimal.
Theorem. [Karatsuba 1960] Conjecture is false.

109

Divide-and-conquer multiplication

To multiply two n-bit integers x and y:
* Divide x and y into low- and high-order bits.
* Multiply four “2n-bit integers, recursively.
* Add and shift to obtain result.

m=[n/2]
| x/2™| b=xmod?2"

a e
) use bit shifting

to compute 4 terms

c=|y/2"| d=ymod?2™

xy = 2"a+b)2"c+d) = 2?"ac + 2" (bc + ad) + bd
© © 06 O

Ex. x =10001101 y=11100001

Y Y Y Y
a b C d

110

Divide-and-conquer multiplication

MULTIPLY (X, y, n)

IF (n=1)
RETURN Xx x y.
ELSE
m< [n/2].

a< |x/2™]|; b<xmod?2™", O

b

c<— |y/2"]|; d<ymod?2™.
e < MULTIPLY(a, c, m).
f <= MULTIPLY (b, d, m).

«— 47T(n/2)
g <— MULTIPLY (b, c, m).

h <= MULTIPLY (a, d, m).

RETURN 2?" e + 2" (g + h) + f. «—— O®)

111

Divide-and-conquer Il: quiz 3 g

How many bit operations to multiply two n-bit integers using the
divide-and-conquer multiplication algorithm?

o(1) if =1
T(n) = A

4T ([n/2]) + ©(n) ifn>1

T(n) = O(n'?).
T(n) = O(n log n).

T(n) — @(nlog23) — O(nl.SSS)_

o N w »

T(n) = O(n?).

112

Karatsuba trick

To multiply two n-bit integers x and y:
* Divide x and y into low- and high-order bits.
* To compute middle term bc + ad, use identity:

bc+ad = ac+bd — (a—->b) (c—d)

* Multiply only three 2n-bit integers, recursively.

x=10001101

J \

m=[n/2] Y Y
a b
a=|x/2"| b=xmod?2"
middle term y=11100001
C=|_y/2mJ d=ym0d2m l)
C d

2" qc + 2™ (bc + ad) + bd
= 2" gc + 2™ (ac + bd — (a-b)(c—d)) + bd
o O O (2 (3

xy = 2"a+b)2"c+ d)

113

Karatsuba multiplication

KARATSUBA-MULTIPLY (x, y,)

IF (n=1)
RETURN Xx x y.
ELSE
m< [n/2].

a< |x/2™|; b<xmod?2™, O

c<— |y/2"™]|; d<ymod?2™.
¢ < KARATSUBA-MULTIPLY(a, ¢, m).

f < KARATSUBA-MULTIPLY (b, d, m). «— 37T(n/2))

g < KARATSUBA-MULTIPLY(|a — b|, |c —d|, m).
Flip sign of g if needed.

RETURN 2" e + 2" (e+f—-g) +f <«— O®)

114

Karatsuba analysis

Proposition. Karatsuba’s algorithm requires O(n'~%°) bit operations to multiply two »-
bit integers.

Pf. Apply Case 3 of the master theorem to the recurrence:

/

O(1) ifn=1
T(n) = «

3T([n/2]) + ©(n) ifn>1

— T(n) _ @(nlogQS) _ O(n1'585)

Practice.

* Use base 32 or 64 (instead of base 2).
* Faster than grade-school algorithm for about 320—640 bits.

115

Integer arithmetic reductions

Integer multiplication. Given two n-bit integers, compute their product.

arithmetic problem bit complexity

integer multiplication axb M(n)

(@ +)% — a® — b

ab =
2
integer square a? O(M(n)) /
integer division la/b|, amod b O(M(n))
integer square root |Va | OM(n))

integer arithmetic problems with the same bit complexity M(n) as integer multiplication

116

History of asymptotic complexity of integer multiplication

12xx grade school O (n?)

1962 Karatsuba-Ofman O(n'>%)

1963 Toom-3, Toom-4 O (n'4%), O(n'4™

1966 Toom-Cook O(n' %)

1971 Schénhage-Strassen O(nlog n - log log n)

2007 Firer n log n 200og™

2019 Harvey-van der Hoeven O(n log n)
?7? O(n)

number of bit operations to multiply two n-bit integers

Remark. GNU Multiple Precision library uses one of first GMP

five algorlthms depending on 7. \ «Arithmetic without limitations»

used in Maple, Mathematica, gcc, cryptography, ... 1

