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Undirected graphs

Notation. G =(V, E)
* V=nodes (or vertices).
* E = edges (or arcs) between pairs of nodes.
* Captures pairwise relationship between objects.
* Graph size parameters: n=1VI,m=1EI.

V={1,2,3,4,5,6,7,8}

E={1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6,7-8 }

m=11,n=8
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The evolution of FCC lobbying coalitions
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“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010



Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007



Some graph applications

I N N

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

molecule

telephone, computer
gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position
person, actor
neuron
protein

atom

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond



Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with A, = 1 if (u, v) is an edge.
* Two representations of each edge.
* Space proportional to »2.
* Checking if (u, v) is an edge takes ©(1) time.
* Identifying all edges takes ©(n2) time.

12345678

101100000
210111000
311001011
401001000
501110100
6
7
8

00001000
00100001
00100010




Graph representation: adjacency lists

Adjacency lists. Node-indexed array of lists.
* Two representations of each edge. |
degree = number of neighbors of u
* Space is O(m + n). /
* Checking if (u, v) is an edge takes O(degree(u)) time.
* Identifying all edges takes ®(m + n) time.
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Paths and connectivity

Def. A path in an undirected graph G = (V, E) is a sequence of nodes
vi, V2, ..., vk With the property that each consecutive pair vi_i, v; is joined
by a different edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a
path between u and v.
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Cycles

Def. Acycle is a path vi, vo, ..., v In Which v, = v, and k = 2.

Def. Acycle is simple if all nodes are distinct (except for v, and v,).

cycleC = 1-2-4-5-3-1

11



Trees

Def. An undirected graph is a tree if it is connected and does not contain
a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following
statements imply the third:

* G is connected.

* G does not contain a cycle.

* G has n-1 edges.

12



Rooted trees

Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

e root r

the parent of v

° e G @ ° ° a child of v

a tree the same tree, rooted at 1

13



Phylogeny trees

Describe evolutionary history of species.

gut bacteriaq
trees
mushrooms
fish

mammals
birds
dragonflies

beetles

14



GUI containment hierarchy

Describe organization of GUI widgets.

= Converter = IFrame

JPanel
JTextField
157 ider

1ComboRBox

JPanel
1TextField
1S7ider

| JPanel (custom content pane) Iﬂ

I I
JPanel JPanel
(ConversionPanel) {ConversionPanel)

JPanel |JCOmb080x Il |JC0mb080x Il JPanel
{custom) {custom)

| I |
1sTider ITextField ITextField | Is1ider Il
(DecimalField) {DecimalField)

http://java.sun.com/docs/books/tutorial /uiswing/overview/anatomy.html

15
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Connectivity

s-t connectivity problem. Given two nodes s and ¢, is there a path between
sand ¢ ?

s-t shortest path problem. Given two nodes s and ¢, what is the length of
a shortest path between s and ¢ ?

Applications.
* Maze traversal
* Erdds / Kevin Bacon number
* Fewest hops in a communication network

17



Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding nodes one

“layer” at a time.

BFS algorithm.

e Ly={s}.

« L, = all neighbors of L,.

* L, = all nodes that do not belong to L, or L,, and that have an edge to a node in
L,

* L., = all nodes that do not belong to an earlier layer, and that have an edge to a

node in L.

Theorem. For each i, L, consists of all nodes at distance exactly i
from s. There is a path from s to ¢ iff r appears in some layer.

18



Breadth-first search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G.
Then, the levels of x and y differ by at most 1.

19



Breadth-first search: analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the graph is
given by its adjacency representation.

Pf.
* Easy to prove O(n2) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs < n times
- when we consider node u, there are < n incident edges (u, v),
and we spend O(1) processing each edge

* Actually runs in O(m + n) time:
- when we consider node u, there are degree(u) incident edges (u, v)
- total time processing edges is X o, degree(u) = 2m. =

each edge (u, v) is counted exactly twice

in sum: once in degree(u) and once in degree(v)

20



Connected component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 ={1,2,3,4,5,6,7,8 }.

21



Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob of

neighboring lime pixels to blue.
* Node: pixel.
* Edge: two neighboring lime pixels.
* Blob: connected component of lime pixels.

recolor lime green blob to blue

800 Tux Paint
a/ - &

aint  Stamp RainbowSparkles
= . o ° °
Lines Shapes Mirror * Flip

75 o o

Abc —

Text m Blur 'Blocks

o /4 235 ° °
Undo  Redo Negative' Fade
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Eraser ' New Chalk * Drip
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Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob of

neighboring lime pixels to blue.
* Node: pixel.
* Edge: two neighboring lime pixels.
* Blob: connected component of lime pixels.

recolor lime green blob to blue

Tux Paint

8 06C

Tools) Wagid
A=
aint ' Stamp RalnbowS;é.rkles
ol >

Lines 'Shapes Mirror Flip
Abcﬁ —

Text \Magic Blur ' Blocks
&/ 2 4] ﬁ
Undo  Redo Negative' Fade
Eraser ' New éhalk Drip
Qﬁ S - ~—
Open Thick ' Thin

-

é?l ¥/ = O

Coord ) R
: |

olor 9

w Click in the picture to fill that area with color.

s
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Connected component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v ¢R @
Add v to R

Endwhile it’s safe to add v

Theorem. Upon termination, R is the connected component containing s.
* BFS = explore in order of distance from s.
* DFS = explore in a different way.

24
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Bipartite graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored blue or
white such that every edge has one white and one blue end.

Applications.
* Stable matching: med-school residents = blue, hospitals = white.

* Scheduling: machines = blue, jobs = white.

a bipartite graph

26



Testing bipartiteness

Many graph problems become:
* Easier if the underlying graph is bipartite (matching).
* Tractable if the underlying graph is bipartite (independent set).

Before attempting to design an algorithm, we need to understand structure of
bipartite graphs.

S XT N\

NN

a bipartite graph G another drawing of G

27



An obstruction to bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.

Pf. Not possible to 2-color the odd-length cycle, let alone G.

bipartite not bipartite
(2-colorable) (not 2-colorable)

28



Bipartite graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced by
BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(i) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

~ O O O
@ ‘\/\?&
L1 L2 I—3 I-1 I—2 L3
Case (i) Case (ii)
29



Bipartite graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced by
BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(i) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
* Suppose no edge joins two nodes in same layer.
* By BFS property, each edge joins two nodes in adjacent levels.
* Bipartition: white = nodes on odd levels, blue = nodes on even levels.

Case (i)

30



Bipartite graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced by
BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(i) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (ii)
* Suppose (x, y) is an edge with x, y in same level L,.

Let z = lca(x, y) = lowest common ancestor.

Let L, be level containing z.
Consider cycle that takes edge from x to y,

then path from y to z, then path from z to x.

lts lengthis 1 + (j—i) + (j—1i), whichis odd. =
¥ Y
(x,y) pathfrom path from
ytoz ztox

31



The only obstruction to bipartiteness

Corollary. A graph G is bipartite iff it contains no odd-length cycle.

bipartite not bipartite
(2-colorable) (not 2-colorable)

<«<—— b5-cycle C

32
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Directed graphs

Notation. G =(V, E).
* Edge (u, v) leaves node u and enters node v.

34



World wide web

Web graph: hyperlink points from one web page to another (Orientation of edges is
crucial).

* Node: web page.

* Edge: hyperlink from one page to another (orientation is crucial).

* Modern search engines exploit hyperlink structure to rank web pages by

importance.
cnn.com

netscape.com novell.com cnnsi.com timewarner.com

gameofthrones.com

35



Road network

Node = intersection; edge = one-way street.
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Political blogosphere graph

Node = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
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Ecological food web

Food web graph.
* Node = species.
* Edge = from prey to predator.

M / Vi Ie g reaf eg ret
fox o h

blue-qill fish

northemn copperbelly

water snake
\ 7 —
—— L'A.;'.‘ -

,,
[ X
— I
—

shrew
spotted salamander

g
BG4

leopard frog

algae (magnified)

cattails

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff
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Some directed graph applications

directed graph “ directed edge

street intersection

transportation

one-way street

web web page hyperlink
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
financial bank transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from
control flow code block jump

39



Graph search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s~t shortest path problem. Given two nodes s and ¢,
what is the length of a shortest path from s to ¢ ?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s,
either directly or indirectly.

40



Strong connectivity

Def. Nodes u and v are mutually reachable if there is both a path from u to v and
also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from
s, and s is reachable from every node.

Pf. = Follows from definition.
Pf. < Path from u to v: concatenate u~s path with s~v path.
Path from v to u: concatenate v~s path with s~u path. =

/\ ok if paths overlap

e

41



Strong connectivity: algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.
* Pick any node s.
Run BFS from S in G reverse orientation of every edge in G
Run BFS from s in G7everse,
Return true iff all nodes reached in both BFS executions.

Correctness follows immediately from previous lemma. =

strongly connected not strongly connected

42



Strong components

Def. A strong component is a maximal subset of mutually reachable nodes.

0

@ (2

Theorem. [Tarjan 1972] Can find all strong components in O(m + n) time.

SIAM J. ComMPUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANY

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k,V + k,E + k;for some constants k,, k,, and k5, where Vis the number of vertices and E is the number
of edges of the graph being examined.
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Directed acyclic graphs

Def. ADAG is a directed graph that contains no directed cycles.

Def. Atopological order of a directed graph G = (V, E) is an ordering of its nodes as
Vi, Vs, ..., v, SO that for every edge (v;,v;) we have i <.

VAVAN

VAV =

a DAG a topological ordering

45



Precedence constraints

Precedence constraints. Edge (v;, v) means task v; must occur before v,.

Applications.
* Course prerequisite graph: course v; must be taken before v,.
* Compilation: module v; must be compiled before v..
* Pipeline of computing jobs: output of job v; needed to determine input of job v,.

46



Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]
« Suppose that G has a topological order v, v,, ..., v, and that G also has a

directed cycle C. Let’s see what happens.

* Let v, be the lowest-indexed node in C, and let v; be the node just
before v;; thus (v;,v;) is an edge.

* By our choice of i, we have i <.

* On the other hand, since (v;, v, is an edge and v, v,, ...,
order, we must have j < i, a contradiction. =

v, IS a topological

the directed cycle C

@@@@@@@

the supposed topological order: v,, ..., v,

47



Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

48



Directed acyclic graphs

Lemma. If Gis a DAG, then G has a node with no entering edges.

Pf. [by contradiction]

* Suppose that G is a DAG and every node has at least one entering edge. Let’s
see what happens.
Pick any node v, and begin following edges backward from v. Since v has at

least one entering edge (1, v) we can walk backward to u.
Then, since u has at least one entering edge (x, u), we can walk backward to x.

Repeat until we visit a node, say w, twice.
Let C denote the sequence of nodes encountered between successive visits to

w.Cisacycle. =

-0—@—0—0—0—0—@

49



Directed acyclic graphs

Lemma. If Gis a DAG, then G has a topological ordering.

Pf.

[by induction on #] >

Base case: true if n = 1.

Given DAG on n > 1 nodes, find a node v with no entering edges.
G - { v }is a DAG, since deleting v cannot create cycles.

By inductive hypothesis, G — { v } has a topological ordering.
Place v first in topological ordering; then append nodes of G- { v }
in topological order. This is valid since v has no entering edges. =

To compute a topological ordering of G: DAG
Find a node v with no incoming edges and order it first
Delete v from G }I/f

Recursively compute a topological ordering of G—{v}

and append this order after v

50



Topological sorting algorithm: running time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.

* Maintain the following information:

- count(w) = remaining number of incoming edges

- S = set of remaining nodes with no incoming edges
* Initialization: O(m + n) via single scan through graph.
* Update: to delete v

- remove v from S

- decrement count(w) for all edges from v to w;

and add w to S if count(w) hits 0
- thisis O(1) per edge =

51



