
High-Speed Tutorial
“Please make sure your seat backs are in their full, upright position and that your tray tables are
stored. Flight attendants, prepare for take-off….”

What follows is a quick tutorial that walks you through some basic Subversion configuration and operation.
When you finish it, you should have a general understanding of Subversion's typical usage.

The examples used in this appendix assume that you have svn, the Subversion command-line
client, and svnadmin, the administrative tool, ready to go on a Unix-like operating system.
(This tutorial also works at the Windows command-line prompt, assuming you make some
obvious tweaks.) We also assume you are using Subversion 1.2 or later (run svn --version
to check).

Subversion stores all versioned data in a central repository. To begin, create a new repository:

$ cd /var/svn
$ svnadmin create repos
$ ls repos
conf/ dav/ db/ format hooks/ locks/ README.txt
$

This command creates a Subversion repository in the directory /var/svn/repos, creating the repos directory itself
if it doesn't already exist. This directory contains (among other things) a collection of database files. You won't
see your versioned files if you peek inside. For more information about repository creation and maintenance, see
Chapter 5, Repository Administration.

Subversion has no concept of a “project.” The repository is just a virtual versioned filesystem, a large tree that
can hold anything you wish. Some administrators prefer to store only one project in a repository, and others
prefer to store multiple projects in a repository by placing them into separate directories. We discuss the merits
of each approach in the section called “Planning Your Repository Organization”. Either way, the repository
manages only files and directories, so it's up to humans to interpret particular directories as “projects.” So while
you might see references to projects throughout this book, keep in mind that we're only ever talking about some
directory (or collection of directories) in the repository.

In this example, we assume you already have some sort of project (a collection of files and directories) that you
wish to import into your newly created Subversion repository. Begin by organizing your data into a single
directory called myproject (or whatever you wish). For reasons explained in Chapter 4, Branching and Merging,
your project's tree structure should contain three top-level directories named branches, tags, and trunk. The
trunk directory should contain all of your data, and the branches and tags directories should be empty:

/tmp/
 myproject/
 branches/
 tags/

http://svnbook.red-bean.com/en/1.6/svn.reposadmin.html
http://svnbook.red-bean.com/en/1.6/svn.reposadmin.planning.html#svn.reposadmin.projects.chooselayout
http://svnbook.red-bean.com/en/1.6/svn.branchmerge.html

 trunk/
 foo.c
 bar.c
 Makefile
 …

The branches, tags, and trunk subdirectories aren't actually required by Subversion. They're merely a popular
convention that you'll most likely want to use later on.

Once you have your tree of data ready to go, import it into the repository with the svn import command (see the
section called “Getting Data into Your Repository”):

$ svn import /tmp/myproject file:///var/svn/repos/myproject \
 -m "initial import"
Adding /tmp/myproject/branches
Adding /tmp/myproject/tags
Adding /tmp/myproject/trunk
Adding /tmp/myproject/trunk/foo.c
Adding /tmp/myproject/trunk/bar.c
Adding /tmp/myproject/trunk/Makefile
…
Committed revision 1.
$

Now the repository contains this tree of data. As mentioned earlier, you won't see your files by directly peeking
into the repository; they're all stored within a database. But the repository's imaginary filesystem now contains a
top-level directory named myproject, which in turn contains your data.

Note that the original /tmp/myproject directory is unchanged; Subversion is unaware of it. (In fact, you can even
delete that directory if you wish.) To start manipulating repository data, you need to create a new “working
copy” of the data, a sort of private workspace. Ask Subversion to “check out” a working copy of the
myproject/trunk directory in the repository:

$ svn checkout file:///var/svn/repos/myproject/trunk myproject
A myproject/foo.c
A myproject/bar.c
A myproject/Makefile
…
Checked out revision 1.
$

Now you have a personal copy of part of the repository in a new directory named myproject. You can edit the
files in your working copy and then commit those changes back into the repository.

Enter your working copy and edit a file's contents.

Run svn diff to see unified diff output of your changes.

Run svn commit to commit the new version of your file to the repository.

Run svn update to bring your working copy “up to date” with the repository.

For a full tour of all the things you can do with your working copy, read Chapter 2, Basic Usage.

At this point, you have the option of making your repository available to others over a network. See Chapter 6,

http://svnbook.red-bean.com/en/1.6/svn.tour.importing.html
http://svnbook.red-bean.com/en/1.6/svn.tour.html
http://svnbook.red-bean.com/en/1.6/svn.serverconfig.html

Server Configuration to learn about the different sorts of server processes available and how to configure them.

You are reading Version Control with Subversion (for Subversion 1.6), by Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael
Pilato.

This work is licensed under the Creative Commons Attribution License v2.0.
To submit comments, corrections, or other contributions to the text, please visit http://www.svnbook.com/.

http://svnbook.red-bean.com/en/1.6/svn.serverconfig.html
http://creativecommons.org/licenses/by/2.0/
http://www.svnbook.com/

