

 Computer Systems

MTSU CSCI 3240

Spring 2016

Dr. Hyrum D. Carroll

Materials from CMU and Dr. Butler

A software view

User
Interface

How it works
hello.c program

 #include <stdio.h>

 int main()

 {

 printf(“hello, world\n”);

 }

The Compilation system
gcc is the compiler driver

gcc invokes several other compilation phases
1)  Preprocessor
2)  Compiler
3)  Assembler
4)  Linker

What does each one do? What are their outputs?

Pre-
processor
(cpp)

hello.i Compiler
(cc1)

hello.s Assembler
(as)

hello.o Linker
(ld)

hello hello.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

1. Preprocessor (cpp)
First, gcc compiler driver invokes cpp to generate

expanded C source
!  cpp just does text substitution
!  Converts the C source file to another C source file
!  Expands #defines, #includes, etc.
!  Output is another C source

1. Preprocesser
Included files:

#include <foo.h>
#include “bar.h”

Defined constants:
#define MAXVAL 40000000

 By convention, all capitals tells us it’s a constant, not a variable.

Macros:
#define MIN(x,y) ((x)<(y) ? (x):(y))
#define RIDX(i, j, n) ((i) * (n) + (j))

1. Preprocesser
Conditional compilation:

#ifdef … or #if defined(…)
#endif
!  Code you think you may need again (e.g. debug print

statements)
"  Include or exclude code based on #define/#ifdef
"  More readable than commenting code out

!  Portability
"  Compilers have “built in” constants defined
"  Operating system specific code

»  #if defined(__i386__) || defined(WIN32) || …
"  Compiler-specific code

»  #if defined(__INTEL_COMPILER)
"  Processor-specific code

»  #if defined(__SSE__)

2. Compiler (cc1)
Next, gcc compiler driver invokes cc1 to generate

assembly code
!  Translates high-level C code into assembly

"  Variable abstraction mapped to memory locations and registers
"  Logical and arithmetic functions mapped to underlying machine

opcodes

3. Assembler (as)
Next, gcc compiler driver invokes as to generate object

code
! Translates assembly code into binary object code that can

be directly executed by CPU

4. Linker (ld)
Finally, gcc compiler driver calls linker (ld) to generate

executable
!  Links together object code and static libraries to form final

executable

Linker (ld)

a.o

p

m.o Libraries
libc.a

This is the executable program

Summary of compilation process
Compiler driver (cc or gcc) coordinates all steps

!  Invokes preprocessor (cpp), compiler (cc1), assembler (as),
and linker (ld).

!  Passes command line arguments to appropriate phases

Pre-
processor
(cpp)

hello.i Compiler
(cc1)

hello.s Assembler
(as)

hello.o Linker
(ld)

hello hello.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

The run-time system
Program runs on top of an operating system that

implements
!  File system
!  Memory management
!  Processes
!  Device management
!  Network support
!  etc.

Operating system functions
Protection

!  Protects the hardware/itself from user programs
!  Protects user programs from each other
!  Protects files from unauthorized access

Resource allocation
!  Memory, I/O devices, CPU time, space on disks

Operating system functions
Abstract view of resources

!  Files as an abstraction of storage devices
!  System calls an abstraction for OS services
!  Virtual memory a uniform memory space abstraction for each

process
"  Gives the illusion that each process has entire memory space

!  A process (in conjunction with the OS) provides an abstraction for a
virtual computer

"  Slices of CPU time to run in

Unix file system
Key concepts

!  Everything is a file
"  Keyboards, mice, CD-ROMS, disks, modems, networks, pipes,

sockets
"  One abstraction for accessing most external things

!  A file is a stream of bytes with no other structure.
"  on the hard disk or from an I/O device
"  Higher levels of structure are an application concept, not an

operating system concept
»  No “records” (contrast with Windows/VMS)

Unix file systems
Managed by OS on disk

!  Dynamically allocates space for files
!  Implements a name space so we can find files
!  Hides where the file lives and its physical layout on disk
!  Provides an illusion of sequential storage

All we have to know to find a file is its name

Process abstraction
A fundamental concept of operating systems.
A process is an instance of a program when it is running.

!  A program is a file on the disk containing instructions to execute
!  A process is an instance of that program loaded in memory and

running
"  Like you baking the cookies, following the instructions

A process includes
!  Code and data in memory, CPU state, open files, thread of

execution

How does a program get executed?
The operating system creates a process.

!  Including among other things, a virtual memory space

System loader reads program from file system and
loads its code into memory
!  Program includes any statically linked libraries
!  Done via DMA (direct memory access)

System loader loads dynamic shared objects/libraries
into memory

Then it starts the thread of execution running
!  Note: the program binary in file system remains and can be

executed again

Where are programs loaded in memory?

To start with, imagine a primitive operating system.
#  Single tasking.
#  Physical memory addresses go from zero to N.

The problem of loading is simple
#  Load the program starting at address zero
#  Use as much memory as it takes.
#  Linker binds the program to absolute addresses
#  Code starts at zero
#  Data concatenated after that
#  etc.

Where are programs loaded, cont’d

Next imagine a multi-tasking operating system on a primitive
computer.

!  Physical memory space, from zero to N.
!  Applications share space
!  Memory allocated at load time in unused space
!  Linker does not know where the program will be loaded
!  Binds together all the modules, but keeps them relocatable

How does the operating system load this program?
!  Not a pretty solution, must find contiguous unused blocks

How does the operating system provide protection?
!  Not pretty either

Where are programs loaded, cont’d

Next, imagine a multi-tasking operating system on a
modern computer, with hardware-assisted virtual
memory

The OS creates a virtual memory space for each user’s
program.
!  As though there is a single user with the whole memory all to

itself.

Now we’re back to the simple model
!  The linker statically binds the program to virtual addresses
!  At load time, the operating system allocates memory, creates

a virtual address space, and loads the code and data.
!  Binaries are simply virtual memory snapshots of programs

Example memory map

Nothing is left relocatable, no relocation at load time

kernel virtual memory
(code, data, heap, stack)

memory mapped region for
shared libraries

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused
0

%esp (stack pointer)

memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

loaded from the
executable file

0xffffffff

The memory hierarchy
Operating system and CPU memory management unit

gives each process the “illusion” of a uniform,
dedicated memory space
!  i.e. 0x0 – 0xFFFFFFFF for IA32
!  Allows multitasking
!  Hides underlying non-uniform memory hierarchy

Memory heirarchy motivation
In 1980

!  CPUs ran at around 1 mhz.
!  A memory access took about as long as a CPU instruction
!  Memory was not a bottleneck to performance

Today
!  CPUs are about 3000 times faster than in 1980
!  DRAM Memory is about 10 times faster than in 1980

We need a small amount of faster, more expensive
memory for stuff we’ll need in the near future
!  How do you know what you’ll need in the future?
!  Locality
!  L1, L2, L3 caches

The memory heirarchy

Remote Secondary Storage

Local Secondary Storage

Main Memory

Level 2 Cache
(off chip)

Level 1 Cache
On Chip

Registers
L0

L1

L2

L3

L4

L5

Smaller
Faster
More Expensive

Larger
Slower
Cheaper

USB
Controller

Graphics
Controller

Disk
Controller

Hardware organization
The last piece…how does it all run on hardware?

CPU

Bus Interface I/O Bridge

ALU PC

Register File

Main
Memory

I/O Bus

Memory Bus

System Bus

. . .

.

.

.

Reading the hello command from the
keyboard

Main�
memory�

I/O �
bridge�Bus interface�

ALU�

�������������

CPU�

System bus� Memory bus�

Disk �
controller�

Graphics�
adapter�

USB�
�����������

Mouse�Keyboard� Display�
Disk�

I/O bus� Expansion slots for�
other devices such�
as network adapters�
�

PC�

"hello"�

User�
types�
"hello"�

Loading the executable from disk into
main memory

Main�
memory�

I/O �
bridge�Bus interface�

ALU�

����"#�!�)���

CPU�

System bus� Memory bus�

Disk �
controller�

Graphics�
adapter�

USB�
���#!����!�

Mouse�Keyboard� ��" ��(�
Disk�

I/O bus� �' ��"����"��#"���!�
other devices such�
as network adapters�
�

hello executable �
stored on disk�

PC�

hello code�

"hello,world\n"�

Writing the output string from
memory to the display

Main�
memory�

I/O �
bridge�Bus interface�

ALU�

����!"� �(���

CPU�

System bus� Memory bus�

Disk �
���" ���� �

Graphics�
adapter�

USB�
���" ���� �

Mouse�Keyboard� ��!���'�
Disk�

I/O bus� �&���!����!��"!��� �
other devices such�
as network adapters�
�

hello executable �
stored on disk�

PC�

hello code�

"hello,world\n"�

"hello,world\n"�

