Overview

m Course theme

CSCl 3240 m Five realities

Introduction to Computer Systems m How the course fits into the curriculum
MTSU m Academic integrity

Spring 2016

Cscl 3240
Course Theme: Great Reality #1:
Abstraction Is Good But Don’t Forget Reality Ints are not Integers, Floats are not Reals
m Most CS and CE courses emphasize abstraction m Example 1: Is x2 > 0?
= Abstract data types 12 1306 1307... | [...32767...-32.%8..) [same7... 526]

® Float’s: Yes!
BARA BAMA

= Asymptotic analysis

w2 05 ||, &
m These abstractions have limits W | BEW) 2

AN A A A A_A A
= Especially in the presence of bugs @ ﬁ § i
= Need to understand details of underlying implementations ﬂ

= Int’s:
m Useful outcomes from taking 3240 = 40000 * 40000 = 1600000000
= Become more effective programmers = 50000 * 50000 = ??

= Able to find and eliminate bugs efficiently m Example 2:Is (x +y) +z = x+(y +2)?

= Unsigned & Signed Int’s: Yes!

® Float’s:
= (1e20 +-1€20) + 3.14 -->3.14
= 1e20 +(-1e20 + 3.14) --> ??

= Able to understand and tune for program performance
= Prepare for later “systems” classes in CS & ECE

= Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 3 Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition Source: xked.com/571 4
. . Great Reality #2:
Computer Arithmetic ,
You’ve Got to Know Assembly
m Does not generate random values m Chances are, you’ll never write programs in assembly
= Arithmetic operations have important mathematical properties = Compilers are much better & more patient than you are
m Cannot assume all “usual” mathematical properties m But: Understanding assembly is key to machine-level execution
= Due to finiteness of representations model
" |nteger operations satisfy “ring” properties = Behavior of programs in presence of bugs
= Commutativity, associativity, distributivity = High-level language models break down
® Floating point operations satisfy “ordering” properties = Tuning program performance
= Monotonicity, values of signs = Understand optimizations done / not done by the compiler
m Observation = Understanding sources of program inefficiency
= Need to understand which abstractions apply in which contexts * Implementing system software
= Important issues for compiler writers and serious application programmers * Compiler has machine code as target

= Operating systems must manage process state
= Creating / fighting malware
= x86 assembly is the language of choice!

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5 Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

CSCI 3240

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

m Memory is not unbounded
® |t must be allocated and managed
= Many applications are memory dominated
m Memory referencing bugs especially pernicious
= Effects are distant in both time and space
= Memory performance is not uniform
= Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

CSCI 3240

Memory Referencing Bug Example

typedef struct { fun (0) = 3.14
int a[2]; fun(l) = 3.14
CERED) fun(2) = 3.1399998664856
Bstructhty fun(3) = 2.00000061035156
fun(4) = 3.14
fun(6) = Segmentation fault
Explanation:
Critical State 6
? 5
? 4 Location accessed by
fun (i)
d7 ... d4
struct_t
d3 ... do 2
Bryant and O'Hallaron, Computer Systems: A & :l‘njr'sPerspectwe TmrdEdmo:rL 9

CSCI 3240

Great Reality #4: There’s more to
performance than asymptotic complexity

m Constant factors matter too!
= And even exact op count does not predict performance
= Easily see 10:1 performance range depending on how code written
= Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
m Must understand system to optimize performance
® How programs compiled and executed
= How to measure program performance and identify bottlenecks

® How to improve performance without destroying code modularity and
generality

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition M

CSCI 3240

Memory Referencing Bug Example

typedef struct {
int a[2];
double d;

} struct_t;

double fun(int i) {
volatile struct_t s;
s.d = 3.14;
s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

}

fun(0) = 3.14

fun(l) = 3.14

fun(2) = 3.1399998664856
fun(3) = 2.00000061035156
fun(4) = 3.14

fun(6) = Segmentation fault

= Result is system specific

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

CSCI 3240

Memory Referencing Errors

m C and C++ do not provide any memory protection
= Qut of bounds array references
® |nvalid pointer values
= Abuses of malloc/free
m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated
= How can | deal with this?
= Program in Java, Ruby, Python, ML, ...
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors (e.g. Valgrind)

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

CSCI 3240

Memory System Performance Example

void copyij(int src[2048][2048], void copyji(int src[2048][2048],

int dst[2048][2048]) int dst[2048][2048])
{ {
int i,3; int i,3;
for (i = 0; i < 2048; i++) /for (J = 0; j < 2048; j++)
for (5 = 0; j < 2048; j++) DA for (i = 0; i < 2048; it++)
dst[i][j] = src[il[3]: dst[i] [j] = src[il[3l;
} }
4.3ms 81.8ms

2.0 GHz Intel Core i7 Haswell

m Hierarchical memory organization
m Performance depends on access patterns

= Including how step through multi-dimensional array

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Why The Performance Differs

Read throughput (MB/s)
2
8
g
S

N

512k
m

~ S
- 128K

7 8
Stride (x8 bytes) s m

’ 32m Size (bytes)

1"
*Mi2gm

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

CSCI 3240

Role within CS/ECE Curriculum

[Databases Networks' OpCeine Compilers: Architecture
Systems
~ N T /
Network Processes Machine
Data Reps.

Execution Model
Memory System

Memory Model Protocols, . Mem. Mgmt Code

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

CSCI 3240

Cheating: Description

m What is cheating?
= Sharing code: by copying, retyping, looking at, or supplying a file
Describing: verbal description of code from one person to another.

= Coaching: helping your friend to write a lab, line by line

= Searching the Web for solutions

Copying code from a previous course or online solution
= You are only allowed to use code we supply, or from the CS:APP website
m What is NOT cheating?
= Explaining how to use systems or tools
= Helping others with high-level design issues

m See the course syllabus for details.
® Ignorance is not an excuse

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

CSCI 3240

Great Reality #5:
Computers do more than execute programs

m They need to get data in and out
= |/O system critical to program reliability and performance

m They communicate with each other over networks
= Many system-level issues arise in presence of network
= Concurrent operations by autonomous processes
= Coping with unreliable media
= Cross platform compatibility
= Complex performance issues

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition %

Course Perspective

m Most Systems Courses are Builder-Centric
= Computer Architecture
= Design pipelined processor in Verilog
= Operating Systems
= Implement sample portions of operating system
= Compilers
= Write compiler for simple language
= Networking

= Implement and simulate network protocols

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

CSCI 3240

Cheating: Consequences

m Penalty for cheating:
= Removal from course with failing grade (no exceptions!)
= Permanent mark on your record
® Your instructors’ personal contempt

m Detection of cheating:
= | have sophisticated tools for detecting code plagiarism
= Last Fall at CMU, 20 students were caught cheating and failed the course.
= Some were expelled from the University

m Don’t do it!
= Start early
= Ask the tutors for help when you get stuck

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

CSCI 3240 CSCI 3240

Textbooks Course Components
m Randal E. Bryant and David R. O’Hallaron, m Lectures
= Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e), = Higher level concepts

Pearson, 2016
= http://csapp.cs.cmu.edu
= This book really matters for the course!
= How to solve labs
= Practice problems typical of exam problems

m Labs
= The heart of the course
® Provide in-depth understanding of an aspect of systems
® Programming and measurement

m Exams (midterm + final)

= Test your understanding of concepts & mathematical principles
m Brian Kernighan and Dennis Ritchie,

= The C Programming Language, Second Edition, Prentice Hall, 1988
= Still the best book about C, from the originators

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19 Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Getting Help

m Class Web page: http://www.cs.mtsu.edu/~hcarroll/3240
= Complete schedule of lectures, exams, and assignments

= Copies of lectures, assignments

= Clarifications to assignments We I CO m e
= Tutors and Enjoy!

m Office Hours

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2 Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

