

 GDB debugger

gdb
To compile a program for use with gdb, use the ‘-g’

compiler switch
!  Add debug symbols and do not reorder instructions

Better graphical interfaces
!  Most debuggers provide the same functionality
!  gdb -tui

•  layout split, layout regs
!  DDD: http://www.gnu.org/software/ddd/

Controlling program execution
run

!  Starts the program

step
!  Step program until it reaches a different source line.

next
!  Step program, proceeding through subroutine calls.
!  Single step to the next source line, not into the call.

continue
!  Continue program execution after signal or breakpoint.

Controlling program execution
break, del

!  Set and delete breakpoints at particular lines of code

watch, rwatch, awatch
!  Data breakpoints
!  Stop when the value of an expression changes (watch), when

expression is read (rwatch), or either (awatch)

Printing out code and data
print

!  Print expression

!  Basic
"  print argc
"  print argv[0]

!  print {type} addr
"  (gdb) p {char *} 0xbfffdce4

!  print /x addr
"  ‘/x’ says to print in hex. See “help x” for more formats
"  Same as examine memory address command (x)

!  printf “format string” arg-list
"  (gdb) printf "%s\n", argv[0]

list
!  Display source code (useful for setting breakpoints)

Other Useful Commands
where, backtrace

!  Produces a backtrace - the chain of function calls that
brought the program to its current place.

up, down
!  Change scope in stack

info
!  Get information
!  ‘info’ alone prints a list of info commands
!  ‘info br’ : a table of all breakpoints and watchpoints
!  ‘info reg’ : the machine registers

quit
!  Exit the debugger

Example Program
1 #include <stdio.h>
2 void sub(int i)
3 {
4 char* here[900];
5 sprintf((char *)here,"Function %s in %s", __FUNCTION__ , __FILE__);
6 printf("%s @ line %d\n", here, __LINE__);
7 }
8
9 void sub2(int j)
10 { printf("%d\n",j); }
11
12 int main(int argc, char** argv)
13 {
14 int x;
15 x = 30;
16 sub2(x);
17 x = 90;
18 sub2(x);
19 sub(3);
20 printf("%s %d\n",argv[0],argc);
21 return(0);
22 }

Walkthrough example
% gcc –g –o gdb_ex gdb_ex.c
% gdb gdb_ex
(gdb) set args a b c d set program arguments
(gdb) list 1,22 list source file
(gdb) break 14 break at source line at program start
(gdb) break sub subroutine break
(gdb) break 6
(gdb) run start program (breaks at line 14)
(gdb) p argv hex address of argv (char**)
(gdb) p argv[0] prints “gdb_ex”
(gdb) p argv[1] prints “a”
(gdb) p strlen(argv[1]) prints 1
(gdb) p argc prints 5
(gdb) p /x argc prints 0x5
(gdb) p x uninitialized variable
(gdb) n go to next line
(gdb) p x x now 30
(gdb) p /x &x print address of x
(gdb) x/w &x print contents at address of x

Walkthrough example
(gdb) n go to next line (execute entire call)
(gdb) s go to next source instr
(gdb) s go to next source instr (follow call)
(gdb) continue go until next breakpoint (breaks at line 6 in sub)
(gdb) where list stack trace
(gdb) p x x no longer scoped
(gdb) up change scope
(gdb) p x x in scope, prints 90
(gdb) del 3 delete breakpoint
(gdb) continue finish

(gdb) info br get breakpoints
(gdb) del 1 delete breakpoint
(gdb) break main breakpoint main
(gdb) run start program
(gdb) watch x set a data write watchpoint
(gdb) c watchpoint triggered

DDD

