GDB debugger

Controlling program execution

run
m Starts the program

step
m Step program until it reaches a different source line.

next
m Step program, proceeding through subroutine calls.
= Single step to the next source line, not into the call.

continue

= Continue program execution after signal or breakpoint.

Printing out code and data

print

m Print expression

= Basic
® print argc
® print argv[0]

= print {type} addr
e (gdb) p {char *} Oxbfffdce4

= print /x addr
® ‘/x’ says to print in hex. See “help x” for more formats
® Same as examine memory address command (x)

= printf “format string” arg-list
® (gdb) printf "%s\n", argv[0]
list

= Display source code (useful for setting breakpoints)

gdb

To compile a program for use with gdb, use the ‘-g’
compiler switch

m Add debug symbols and do not reorder instructions

Better graphical interfaces
= Most debuggers provide the same functionality
m gdb -tui
« layout split, layout regs
= DDD:

Controlling program execution

break, del

m Set and delete breakpoints at particular lines of code

watch, rwatch, awatch

m Data breakpoints

m Stop when the value of an expression changes (watch), when

expression is read (rwatch), or either (awatch)

Other Useful Commands

where, backtrace
= Produces a backtrace - the chain of function calls that
brought the program to its current place.
up, down
= Change scope in stack
info
m Get information
m ‘info’ alone prints a list of info commands
m ‘info br’ : a table of all breakpoints and watchpoints
m ‘info reg’ : the machine registers
quit
m Exit the debugger

Example Program

1 #include <stdio.h>

2 void sub(int i)

3

4 char* here[900];
5

6

70}

8

9 void sub2(int j)
10 { printf("%d\n" j); }

12 int main(int argc, char** argv)

sprintf((char *)here,"Function %s in %s", _ FUNCTION__, _ FILE_);
printf("%s @ line %d\n", here, _ LINE__);

13 {

14 int x;

15 x = 30;

16 sub2(x);

17 x = 90;

18 sub2(x);

19 sub(3);

20 printf("%s %d\n",argv[0],argc);
21 return(0);

2 3

Walkthrough example

(gdb) n
(gdb) s
(gdb) s

(gdb) continue
(gdb) where
(gdb)
(gdb)
(gdb)
(gdb) del 3
(gdb) continue

px
up
px

(gdb) info br
(gdb) del 1

(gdb) break main
(gdb) run

(gdb) watch x
(gdb) ¢

go to next line (execute entire call)

go to next source instr

go to next source instr (follow call)

go until next breakpoint (breaks at line 6 in sub)
list stack trace

X no longer scoped

change scope

X in scope, prints 90

delete breakpoint

finish

get breakpoints

delete breakpoint
breakpoint main

start program

set a data write watchpoint
watchpoint triggered

Walkthrough example

% gcc —g —o gdb_ex gdb_ex.c
% gdb gdb_ex

(gdb) setargsab cd set program arguments

(gdb) list 1,22 list source file

(gdb) break 14 break at source line at program start
(gdb) break sub subroutine break

(gdb) break 6

(gdb) run start program (breaks at line 14)

(gdb) p argv hex address of argv (char**)

(gdb) p argv[0] prints “gdb_ex”

(gdb) p argv[1] prints “a”

(gdb) p strlen(argv[1]) prints 1

(gdb) p argc prints 5

(gdb) p /x argc prints 0x5

(gdb) p x uninitialized variable

(gdb) n go to next line

(gdb) p x x now 30

(gdb) p /x &x print address of x

(gdb) x/w &x print contents at address of x

DDD

Fie Edt View Progam Commands Status Source Data

Help

0 el

2 & O e B 2 &

#include <stdio.h>
#include <string.h>

Jnt mainCint arge, char® argv(})
]
char bufF(100]

printf("What is the password? ");
Scanf("%99s" bufF) ;
F (strnam(buff,a (0] ,strien(al0])) {
printf ("Sorry, wrong password.\n");
3 else {
printf ("Submit this string as your homework solution: ¥s\n", af31);

return 0;

char® a[] = {'w31cOm32", "wh34t&ch”, "4ffcdncO”, "mdlwér31", "hOp3u3ni”, "Oyth3cl4”, "S5.th1s1'

Breakpoint 1 at 0x80484f8: file pd.c, Tine 7.
(gdb) run

Breakpoint 1, main (arge=l, argu=0xffffoas4) at po.c:7
(gdo)

) UShkFLLLY
Registers
=3 OxFFFfaacs
ecx OxFFFfdags
edx OxffFfdaas
e 0xf7fadffe
esp OxFFFFd96D
bp OxFFfdets
est 0x0
edi 0x0
ip 0x80484f8
eflags 0x2
cs 0x23
ss 0x2b 4
—
4 Integer regsters « Al registers ks
Close Help

| Execuion window has been cosed. done,

