Textbooks

Required
= Randal E. Bryant and David R. O’Hallaron,
e “Computer Systems: A Programmer’s
Perspective 3 Edition”, Prentice Hall 2015.
® csapp.cs.cmu.edu
@ Most of the slide materials in this class are
based on material provided by Bryant and

Review of C Programming

O’Ha"aron BRYANT » O'HALLARON
MTSU CSCI 3240 Recommended -
Spring 2016 m Brian Kernighan and Dennis Ritchie, THE
® “The C Programming Language, Second o
Dr. Hyrum D. Carroll Edition”, Prentice Hall, 1988 e
Materials from CMU and Dr. Butler PROGRAMMING
LANGUAGE
Why C? Why C?
Used prevalently Compared to other high-level languages (HLLs)
m Operating systems (e.g. Linux, FreeBSD/OS X, windows) m Maps almost directly into hardware instructions making code
= Web servers (apache) potentially more efficient
= Web browsers (firefox) » Provides minimal set of abstractions compared to other HLLs

= Mail servers (sendmail, postfix, uw-imap) + HLLs make programming simpler at the expense of efficiency

m DNS servers (bind)

= Video games (any FPS) Compared to assembly programming
m Graphics card programming (OpenCL GPGPU programming m Abstracts out hardware (i.e. registers, memory addresses) to
based on C) make code portable and easier to write
” = Provides variables, functions, arrays, complex arithmetic
Why? and boolean expressions
m Performance
n Portability

u Wealth of programmers

Why assembly along with C? The C Programming Language

Learn how programs map onto underlying hardware Simple': than c::f, C#, Java
. —_ = No support for
m Allows programmers to write efficient code © Objects
e ® Memory management
Perform platform-specific tasks o Array bounds checking

® Non-scalar operations

m Access and manipulate hardware-specific registers = Simple support for

m Interface with hardware devices © Typing
. .) ® Structures
m Utilize latest CPU instructions = Basic utility functions supplied by libraries
. : @ libc, libpthread, libm
Reverse-engineer unknown binary code = Low-level, direct to machine memory (pointers)
= Analyze security problems caused by CPU architecture = Easier to write bugs, harder to write programs, typically faster

. . . ® Looks better on a resume
n |dentify what viruses, spyware, rootkits, and other malware

are doing
= Understand how cheating in on-line games work

C based on updates to ANSI-C standard
= Current version: C99

The C Programming Language

Compilation down to machine code as in C++
m Compiled, assembled, linked via gcc

Compared to interpreted languages...

m Python / Perl / Ruby / Javascript
® Commands executed by run-time interpreter
® Interpreter runs natively

m Java
o Compilation to virtual machine “byte code”
e Byte code interpreted by virtual machine software
@ Virtual machine runs natively
e Exception: “Just-In-Time” (JIT) compilation to machine code

GCC

n Used to compile C/C++ projects
= List the files that will be compiled to form an executable
= Specify options via flags

= Important Flags:
= -g: produce debug information (important; used by GDB/valgrind)
= -Werror: treat all warnings as errors (this should be your default)
= -Wall/-Wextra: enable all construction warnings
= -pedantic: indicate all mandatory diagnostics listed in C-standard
= -00/-01/-02: optimization levels
= -0 <filename>: name output binary file ‘filename’

= Example:
= gcc -g -Werror -Wall -Wextra -pedantic foo.c bar.c -o baz

Data Types and Sizes
1 1 1

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double - - 10/16

pointer 4 8 8

Our environment

All programs must run on systemé64
m ssh USER@system64.cs.mtsu.edu

Architecture this semester will be x86-64

GNU gcc compiler
m gcc —o hello hello.c
= GNU gdb debugger
= ddd is a graphical front end to gdb
m “gdb -tui” is a graphical curses interface to gdb

m Must use “-g” flag when compiling and remove -O flags
® gcc —g hello.c
® Add debug symbols and do not reorder instructions for
performance

Variables

Named using letters, numbers, some special characters

m By convention, not all capitals

Must be declared before use

= Contrast to typical scripting languages (Python, Perl, PHP,
JavaScript)

m C is statically typed (for the most part)

Constants

Integer literals
1234, 077
OxFE, 0xab78

Character constants
‘a’ — numeric value of character ‘a’
char letterA = ‘a’; } What’s the difference?
int asciiA = ‘a’;

String Literals
“l am a string”
“” || empty string

Constant pointers Declarations and Operators

Used for static arrays Variable declaration can include initialization
® Symbol that points to a fixed location in memory int foo = 34;
char *ptr = “fubar”;
char amsg[] = “This is a test”; This is a test\0 float £f = 34.99;
® Can change change characters in string (amsg[8] = ‘!";) Arithmetic operators
@ Can not reassign amsg to point elsewhere (i.e. amsg = p) -, 5L %

= Modulus operator (%)

Expressions Increment and Decrement

In C, oddly, assignment is an expression Comes in prefix and postfix flavors

m “x=4” has the value 4 m i

W - i

if (x == 4) Makes a difference in evaluating complex statements
y=3; [*setsy to 3 ifxis 4% = A major source of bugs
m Prefix: increment happens before evaluation
if (x = 4) m Postfix: increment happens after evaluation

When the actual increment/decrement occurs is
important to know about
u Is “i++ * 2” the same as “++| * 2” ?

y=3; I* always sets y to 3 (and x to 4) */

while ((c=getchar()) != EOF)

Simple data types Error-handling Note
datatype size values Error handling
char 1 -128 to 127 @ " . . .
short 2 -32,768 to 32,767 = No “throw/catch” exceptions for functions in C
int 4 -2,147,483,648 to 2,147,483,647 m Must look at return values or install global signal handlers
long 4 -2,147,483,648 to 2,147,483,647 (see Chapter 8)
float 4 3.4E+/-38 (7 digits)
double 8 1.7E+/-308 (15 digits long)

Dynamic memory-allocation note “Typical” program

Dynamic memory #include <stdio.h>
= Managed languages such as Java perform memory int main(int arge, char* argvl])
management (ie garbage collection) for programmers {
m C requires the programmer to explicitly allocate and /* print a greeting */
deallocate memory printf ("Good evening!\n");
= No “new” for a high-level object return 0;

= Memory can be allocated dynamically during run-time with !
malloc () and deallocated using free ()

m Must supply the size of memory you want explicitly

$ gcc -o goodevening goodevening.c
$./goodevening

Good evening!

$

Breaking down the code Command Line Arguments (1)
main has two arguments from the command line

#include <stdio.h> int main(int argc, char* argv[])

= Include the contents of the file stdio.h argc

® Case sensitive — lower case only = Number of arguments (including program name)

= No semicolon at the end of line argv

int main (..) = Pointer to an array of string pointers
argv[0]: = program name

m The OS calls this function when the program starts running. argv(1): = first argument

printf (format string, argl, ..) argv[argc-1]: last argument
m Call function from libc library ® Example: find . —print
m Prints out a string, specified by the format string and the = argc=3
arguments. = argv[0] = “find”

argv[1] = “.”
argv[2] = “-print”

Command Line Arguments (2) Command Line Arguments (3)
#include <stdio.h> $./cmdline The Class That Gives MTSU Its Zip
8 arguments
int main(int argc, char* argvl[]) 0: ./cmdline
{ 1: The
. . 2: Class
int 1i;
. 3: That
printf ("$d arguments\n", argc); 4: Gives
for(i = 0; 1 < argc; i++) 5: MTSU
printf (" %d: %s\n", i, argv([i]); 6: Its
return 0; 7: Zip

Arrays

char fool[80];
= An array of 80 characters (stored contiguously in memory)

- sizeof (foo)
=80 x sizeof (char)

=80 x 1 =80 bytes
int bar[40];
An array of 40 integers (stored contiguously in memory)

- sizeof (bar)
=40 x sizeof (int)
=40 x 4 =160 bytes

Structs

m Collection of values placed under one name in a single
block of memory
= Can put structs, arrays in other structs

m Given a struct instance, access the fields using the ‘.’
operator

= Given a struct pointer, access the fields using the ‘->’
operator

struct foo_s { struct bar_s {
int a; char ar[10];
char b; foo_s baz;

1i }i

bar_s biz; // bar_s instance
biz.ar[0] ‘a’;

biz.baz.a 42;

bar_s* boz = &biz; // bar_s ptr
boz->baz.b = ‘b’;

Using Pointers (1)

float f; /* data variable */
float *f_addr; /* pointer variable */
£ £ _addr
| 2
0x4300 0x4304
f_addr = &f; /* & = address operator */
£ £ addr
‘ ? ’—’—'*0x4300 ‘

0x4300 0x4304

Structures (structs)

Aggregate data

#include <stdio.h>

struct person

{
char* name;
int

Yo /< DO

int main(int argc, char* argv[])
{
struct person potter;
potter.name = "Harry Potter";
potter.age = 15;

printf("$s is %d years old\n", potter.name, potter.age);

return 0;

Pointers

Pointers are variables that hold
an address in memory.

That address contains another
variable.

Unique to C and C-like
languages

MAN, | SUCK AT THIS GAME.

CAN YOU GIVE

ME

A FEW POINTERS?

(

| HATE You.

\

0x3A28213A
0x6339232C,
Ox7363682E.

/

A

Using Pointers (2)

f addr = 3.2; / indirection operator */
£ £ _addr
‘ 32 ‘—’—'70)(4300 ‘
0x4300 0x4304
float g = *f_addr;/* indirection: g is now 3.2 */
£ £ _addr g
‘ 32 ‘—’—'*0)(4300 ‘ ‘ 32
0x4300 0x4304 0x4308

Using Pointers (3)

£=1.3; /* but g is still 3.2 */
£ £_addr g
‘ 1.3 ‘—’—'*0)(4300 ‘ ‘ 32
0x4300 0x4304 0x4308

Pointer Arithmetic

= Can add/subtract from an address to get a new
address

= Generally, you should avoid doing this (Only perform when
absolutely necessary)

= Result depends on the pointer type

= A+i, where A is a pointer: 0x100, i is an int (x86-64)
« int* A:A+i = 0x100 + sizeof(int) * i = 0x100 + 4 * i
= char* A:A+i = 0x100 + sizeof(char) * i = 0x100 + i
= int** A!A+i = 0x100 + sizeof (int*) * i = 0x100 + 8 * i
= Rule of thumb: cast pointer explicitly to avoid
confusion
s Prefer (char*) (&) + ivsA + i,evenifchar* A
= Absolutely do this in macros

Function call parameters

Function arguments are passed “by value”.

What is “pass by value”?
m The called function is given a copy of the arguments.

What does this imply?

n The called function can’t alter a variable in the caller
function, but its private copy.

Examples

Pointers To Pointers (etc)

inti, j;
int *v;
int *m;
v = malloc(NROWS * NCOLS * sizeof(int));
m = malloc(NROWS * sizeof(int *));
for (i=0; i < NROWS; i++)
m[i] = v + (NCOLS * i);

cReview/malloc2DArray.c

Function calls (static)

Calls to functions typically static (resolved at compile-
time)

void print_ints(int a, int b) {
printf (“%d %d\n”,a,b);
}

int main(int argc, char* argv[]) {
int i=3;
int j=4;
print_ints(i,j);

}

Example 1: swap_1

void swap_l(int a, int b) Q: Let x=3, y=4,
{ after swap_1(x,y);
int temp; X =7 y=?
temp = a;
a =Db; Airmliym3—
b = temp; ' ’ '
} B: x=3; y=4;

Example 2: swap_2 Call by value vs. reference in C

Call by reference implemented via pointer passing
void swap(int *px, int *py) {

void swap_2(int *a, int *b) Q: Let x=3, y=4, int tmp;
{ after tmp = *px;

int temp; swap_2(&x,&y); *pPx = *py;

temp = *a; X =? y=?) *PY = tmp;

:la) f ::1;1 . A x4 =3 n Swap-s the valut?s of ttte variablef x and y if px is &x and py is &y

= p ; - X=43y=3, = Uses integer pointers instead of integers
} . .) Otherwise, call by value...
B'-*-aﬁq’ void swap(int x, int y) {

int tmp;
tmp = x;
Is this pass by value? x =y
y = tmp;
}
Function calls (dynamic) Casting
Using function pointers, C can support late-binding of = Can cast a variable to a different type

functions where calls are determined at run-time
= Integer Type Casting:

#include <stdio.h> = signed <-> unsigned: change interpretation of most significant
void print_even(int i){ printf("Even %d\n"“,i);} bit
void print_odd(int i) { printf("0dd %d\n”,i); }

= smaller signed -> larger signed: sign-extend (duplicate the sign
int main(int argc, char **argv) { bit)

void (*fp) (int); i i i

int i = arge; = smaller unsigned -> larger unsigned: zero-extend (duplicate 0)

if (arges2) | m Cautions:
fp= T i . s
prprint_even = cast explicitly, out of practice. C will cast operations involving

Jelse(

fp=print_odd; different types implicitly, often leading to errors

! never cast to a smaller type; will truncate (lose) data

fp(i); n
i = never cast a pointer to a larger type and dereference it, this
zve"/]f‘;“p a accesses memory with undefined contents
% ./funcp a b
QOdd 3
Typedefs Macros
m Creates an alias type name for a different type m Fragment of code given a name; replace occurrence of

name with contents of macro

m Useful to simplify names of complex data types + No function call overhead, type neutral

struct list_node { = Uses:

- int x; = defining constants (INT_MAX, ARRAY_SIZE)

! = defining simple operations (MAX(a, b))

typedef int pixel; . .

typedef struct list_node* node; L} Warnlngs.

typedef int (*cmp) (int el, int e2); = Use parenth around ar (] i to avoid pr after
substitution

pixel x; // int type
node foo; // struct list_node* type
cmp int_cmp; // int (*cmp) (int el, int e2) type

= Do not pass expressions with side effects as arguments to macros

#define INT_ MAX 0x7FFFFFFFF

#define MAX(A, B) ((A) > (B) 2 () : (B))
#define REQUIRES (COND) assert (COND)

#define WORD_SIZE 4

#define NEXT_WORD(a) ((char*)(a) + WORD_SIZE)

Header Files

m Includes C declarations and macro definitions to be
shared across multiple files
= Only include function prototypes/macros; no implementation code!

m Usage: #include <header.h>
= #include <1lib> for standard libraries (eg #include <string.h>)
=« #include “file” for your source files (eg #include “header.h”)
= Never include .c files (bad practice)

Header Guards

m Double-inclusion problem: include same header file

tw

ice

[//grandfather

-h V//father.h

include “grandfather.h”

//child.h
#include “father.h”
#include “grandfather.h”

// list.h // list.c // stacks.h

struct list_node { #include “list.h” ffinclude ist.h”
int data; struct stack_head
struct list_node* next; node new_list() { node top;

Vi // implementation node bottom;

typedef struct list node* node;| [})i
ltypedef struct stack_head* stack
node new_list(); oid add_node (int e, node 1) {
oid add_node (int e, node 1); // implementation stack new_stack();

) oid push(int e, stack S);

Error: child.h includes grandfather.h twice

« Solution: header guard ensures single inclusion

//grandfather.h

#ifndef GRANDI
tdefine GRAND

rendif

//father.h
FATHER H #1ifndef
FATHER_H #define

#endif

"ATHER_H
FATHER_H

//child.n
#include “father.h”
#include “grandfather.h”

Odds and Ends

m Prefix vs Postfix increment/decrement
= a++: use a in the expression, then increment a
= ++a:increment a, then use a in the expression

m Switch Statements:

= remember break statements after every case, unless you want
fall through (may be desirable in some cases)

= should probably use a default case

m Variable/function modifiers:
= global variables: defined outside functions, seen by all files
= static variables/functions: seen only in file it’s declared in
= Refer to K&R for other modifiers and their meanings

The C Standard Library

Common functions we don’t need to write ourselves
= Provides a portable interface to many system calls

Analogous to class libraries in Java or C++

Function prototypes declared in standard header files
#include <stdio.h> #include <stddef.h>
#include <time.h> #include <math.h>
#include <string.h> #include <stdarg.h>
#include <stdlib.h>
m Must include the appropriate “.h” in source code

e “man 3 printf” shows which header file to include
= K&R Appendix B lists many original functions

Code linked in automatically
m At compile time (if statically linked gcc -static)
m At run time (if dynamically linked)
* Use “Idd” command to list dependencies
m Use “file” command to determine binary typel

The Standard C Library

The C Standard Library

Exampl

es (for this class)

= |/O

® printf, scanf, puts, gets, open, close, read, write

® fprintf, fscanf, .. , fseek

= Memory operations

® memcpy, memcmp, memset,

m String operations

malloc,

free

® strlen, strncpy, strncat, strncmp

® strtod, strtol, strtoul

The C Standard Library

Examples
m Utility functions

® rand, srand, exit, system, getenv
u Time
® clock, time, gettimeofday
= Jumps
® setjmp, longjmp
= Processes
® fork, execve
= Signals
® signal, raise, wait, waitpid
= Implementation-defined constants
® INT MAX, INT_MIN, DBL MAX, DBL_MIN

/0

Format string composed of ordinary characters (except '%')
= Copied unchanged into the output

Format directives specifications (start with %)
m Character (%c), String (%s), Integer (%d), Float (%f)

m Formatting commands for padding or truncating output and
for left/right justification

%10s => Pad short string to 10 characters, right justified
%-10s => Pad short string to 10 characters, left justified
%.10s => Truncate long strings after 10 characters

* %10.15 => Pad to 10, but truncate after 15, right justified
m Fetches one or more arguments

For more details: man 3 printf

/0

Formatted input

m int scanf (char *format, ..)
® Read formatted input from standard input

m int fscanf (FILE *stream, const char

*format, ...);

= Read formatted input from a file

m int sscanf (char *str, char *format, ..)
e Read formatted input from a string

m Return value
® Number of input items assigned

= Note
® Requires pointer arguments

/0

Formatted output

®m int printf (char *format, ..)
e Sends output to standard output
m int fprintf (FILE *stream, const char *format, ...);
= Sends output to a file
m int sprintf(char *str, char *format, ..)
e Sends output to a string variable
m Return value
© Number of characters printed (not including trailing \0)
e On error, a negative value is returned

I/0

#include <stdio.h>
main() {

char *p;

char *q;

float f,g;
p = "This is a test";

q "This is a test";
f 909.2153258;

printf(":%$10.15s:\n",p); /* right justified, truncate to 15, pad to 10 */

printf(":%15.10s:\n",q); /* right justified, truncate to 10, pad to 15 */
printf(":%0.2f:\n",f); /* Cut off anything after 2nd decimal, No pad */
printf(":%15.5f:\n",f); /* Cut off anything after 5th decimal, Pad to 15 */
return 0;

}

OUTPUT

% ./strs

:This is a test:
: This is a :
:909.22:
: 909.21533:

Example: scanf

includ tdio.h: .
finelude <stdio-n> Q: Why are pointers
int main() giVen to scanf?

{

int x; A: We need to assign
scanf (“%d\n”, &x);
printf (“$d\n”, x); the value to x.

}

I/0

#include <stdio.h>
#include <stdlib.h>
int main()
{
int a, b, c;
printf ("Enter the first value: ");
if (scanf("%d",&a) == 0)
perror ("Input error\n");
exit (255);
}
printf ("Enter the second value: ");
if (scanf("%d",&b) == 0) {
perror ("Input error\n");
exit (255);
}
c=a+ b;
printf("%d + %d = %d\n", a, b, c);
return 0;

OUTPUT

% ./scanf

Enter the first value: 20
Enter the second value: 30
20 + 30 = 50

/0

Direct system call interface
m open () =returns an integer file descriptor
m read (), write() = takes file descriptor as parameter
m close () = closes file and file descriptor

Standard file descriptors for each process
= Standard input (keyboard)

® stdin or 0

Text terminal

= Standard output (display)
® stdout or 1

Keyboard

#0 stdin

= Standard error (display)
® stderror 2

Display @

Example #include <stdio.h>
#include <fentl.h>
#define BUFSIZE 16
int main(int argc, char* argv[]) {
int f1,n;
char buf [BUFSIZE];
long int £2;

if ((f1 = open(argv([l], O RDONLY, 0)) ==
perror("cp: can't open file");
do {
if ((n=read(fl,buf,BUFSIZE)) > 0)
if (write(1l, buf, n) != n)

perror ("cp: write error to stdout");

} while (n==BUFSIZE);
return 0;
b
% cat opentest.txt
This is a test of
the open(), read(),
and write() calls.
% ./opentest opentest.txt
This is a test of
the open(), read(),
and write() calls.
% ./opentest asdfasdf
cp: can't open file: No such file or directory

Program

/0

Line-based input
m char *gets(char *s);
© Reads the next input line from stdin into buffer pointed to by s
©® Null terminates

Line-based output
®m int puts(char *line);
© Outputs string pointed to by 1ine followed by newline
character to stdout

Error handling

Standard error (stderr)
= Used by programs to signal error conditions
m By default, stderr is sent to display
= Must redirect explicitly even if stdout sent to file
fprintf (stderr, “getline: error on input\n”);
perror (“getline: error on input”);
m Typically used in conjunction with errno return error code
® errno = single global variable in all C programs
© Integer that specifies the type of error
® Each call has its own mappings of errno to cause
©® Used with perror to signal which error occurred

/0

Using standard file descriptors in shell

m Redirecting to/from files
® 1ls -1 > outfile
» redirects output to “outfile”
® ./a.out < infile
» standard input taken from “infile”
® 1ls -1 > outfile 2> errorfile
» sends standard error and standard out to
separate files
= Connecting them to each other via Unix pipes
® 1ls -1 | egrep tar
» standard output of “1s” sent to standard input of “egrep”

1/0O via file interface

Supports formatted, line-based and direct /O
m Calls similar to analogous calls previously covered

Opening a file
m FILE *fopen(char *name, char *mode);
® Opens a file if we have access permission
@ Returns a pointer to a file
FILE *fp;
fp = fopen (“/tmp/x”, “r”);
Once the file is opened, we can read/write to it
m fscanf, fread, fgets, fprintf, fwrite, fputs
m Must supply FILE* argument for each call

Closing a file after use

m int fclose(fp);
® Closes the file pointer and flushes any output associated with it

Memory allocation and management

malloc
= Dynamically allocates memory from the heap
® Memory persists between function invocations (unlike local variables)
= Returns a pointer to a block of at least size bytes — not zero filled!
® Allocate an integer
int* iptr =(int*) malloc(sizeof (int));
® Allocate a structure
struct name* nameptr = (struct name¥*)
malloc (sizeof (struct name));
® Allocate an integer array with “value” elements
int *ptr = (int *) malloc(value * sizeof(int));
Be careful to allocate enough memory
= Overrun on the space is undefined
= Common error:

char *cp = (char *) malloc(strlen(buf)*sizeof (char))
® strlen doesn’t account for the NULL terminator

= Fix:
char *cp = (char *) malloc((strlen(buf)+l) *sizeof (char))

Memory allocation and management

Sometimes, before you use memory returned by
malloc, you want to zero it
= Or maybe set it to a specific value

memset () sets a chunk of memory to a specific value

m void *memset(void *s, int c, size t n);

Set memory tovalue forlength

1/0 via file interface

#include <stdio.h>
#include <string.h>

main(int argc, char** argv)
{

int i;

char *p;

FILE *fp;

fp = fopen ("tmpfile.txt", "wt");
p = argv([1];

fwrite(p, strlen(p), 1, fp);
fclose (£p) ;

return 0;

OUTPUT:

% ./fops HELLO

% cat tmpfile.txt
HELLO

Memory allocation and management

free
m Deallocates memory in heap.
m Pass in a pointer that was returned by malloc.

= Integer example
int *iptr = (int*) malloc(sizeof (int));
free (iptr);

m Structure example
struct table* tp = (struct table*)malloc(sizeof (struct table));
free (tp) ;

Freeing the same memory block twice corrupts memory and
leads to exploits

Memory allocation and management

Because not all data consists of text strings...

void *memcpy (void *dest, void *src, size_t n);

void *memmove (void *dest, void *src, size_t n);

Malloc, Free, Calloc

= Handle dynamic memory

= void* malloc (size_t size):
= allocate block of memory of size bytes

= does not initialize memory

= void* calloc (size_t num, size_t size):

= allocate block of memory for array of num elements, each size bytes
long

= initializes memory to zero values

s void free(void* ptr):

= frees memory block, previously allocated by malloc, calloc, realloc,
pointed by ptr

= use exactly once for each pointer you allocate

= size argument:
= should be computed using the sizeof operator
= sizeof: takes a type and gives you its size
= e.g. sizeof (int), sizeof (int¥)

Stack Vs Heap Allocation

m Local variables and function arguments are placed on
the stack

= deallocated after the variable leaves scope
= do notreturn a pointer to a stack-allocated variable!
= do not reference the address of a variable outside its scope!

= Memory blocks allocated by calls to malloc/calloc are
placed on the heap

m Globals, constants are placed elsewhere

m Example:

= [l ais a pointer on the stack to a memory block on the heap
= int* a = malloc(sizeof(int));

Strings

In C, a string is an array of characters terminated with
the “null” character (\0’, value = 0).
m Character pointer p
® Sets p to address of a character array
® p can be reassigned to another address

char *p = “Thisis a test’; | =+—] This is a test\0

m Examples

char name[4] = “bob”;
char title[10] = “Mr.”;

o
—

o ‘b

]

title —>‘ M7 vt

Memory Management Rules

= Malloc what you free, free what you malloc
= client should free memory allocated by client code
= library should free memory allocated by library code

m Number mallocs = Number frees

= Number mallocs > Number Frees: definitely a memory leak
= Number mallocs < Number Frees: definitely a double free

m Free a malloced block exactly once
= Should not dereference a freed memory block

Strings

String functions are provided in an ANSI standard

string library.
#include <string.h>

m Includes functions such as:
® Computing length of string
® Copying strings
® Concatenating strings

Copying strings

Consider
char* p=“PPPPPPP”;
char* g="0000000";
P =4q;
What does this do?
1. Copy QQQQQQ into 0x1007?
2. Set p to 0x200

™ o]

a

0x100

“oo00000

0x200

Copying strings

Consider ~,
char* p=“PPPPPPP”;
char* g="0000000"; 0x100
q
P “oo00000
What does this do? 0x200
A)Copy QQQQQQinto 0x1007—

B) Set p to 0x200

Copying strings

1. Must manually copy characters 0x100
2. Or use strncpy to copy characters a 3
Q000000
0x200

C String Library

Some of C's string functions
strlen(char *sl)

® Returns the number of characters in the string, not including
the “null” character

strncpy (char *sl, char *s2, int n)
® Copies at most n characters of s2 on top of s1. The order of the
parameters mimics the assignment operator

strncmp (char *sl, char *s2, int n)
® Compares up to n characters of s1 with s2
® Returns <0, 0, >0 if s1 <s2, s1 ==s2 or s1 > s2 lexigraphically
strncat (char *sl, char *s2, int n)
o Appends at most n characters of s2 to s1
Insecure deprecated versions: strcpy, strcmp, strcat

strncpy and null termination

strncpy does not guarantee null termination
= Intended to allow copying of characters into the middle of

other strings
m Use snprintf to guarantee null termination

Example

THS 1 GREAT, BUT YOU FORGOT" T0 APD

#include <string.h> ANULL TERMAATOR. NOW I'M UST READNG
GARBAGE.

main() {
char a[20]="The quick brown fox";
char b[9]="01234567";
strncpy(a,b,8);
printf ("$s\n",a);
}
% ./a.out
01234567k brown fox

Strings

Assignment(=) and equality (==) operators
char *p;
char *q;
if (p == q) {
printf (“This is only true if p and q point to the
same address”) ;

}
P = q; /* The address contained in q is placed */
/* in p. Does not change the memory */

/* locations p previously pointed to.*/

String code example

#include <stdio.h>
#include <string.h>

int main() {
char first[10] = "bobby ";
char last[15] = "smith";
char name([30];
char you[5] = "bobo";

strncpy(name, first, strlen(first)+1l);
strncat (name, last, strlen(last)+1);
printf("%d, %s\n", strlen(name), name);
printf ("$d \n",strncmp (you, first,3));

Other string functions
Converting strings to numbers

#include <stdlib.h>
int strtol (char *ptr, char **endptr, int base);
Takes a character string and converts it to an integer.
= White space and + or - are OK.

m Starts at beginning of ptr and continues until something non-
convertible is encountered.

m endptr (if not null, gives location of where parsing stopped due

to error)
Some examples:
String Value returned
"157" 157
"-1.6" -1
"+50x" 50
"twelve" 0

"x506" 0

Other string functions

double strtod (char * str, char **endptr);

m String to floating point
= Handles digits 0-9.
m A decimal point.

= An exponent indicator (e or E).

u If no characters are convertible a 0 is returned.

Examples:

m String Value returned
2" 12.000000
"-0.123" -0.123000
"123E+3" 123000.000000
"123.1e-5" 0.001231

Random number generation

Generate pseudo-random numbers

m int rand(void) ;

® Gets next random number

m void srand(unsigned int seed);

® Sets seed for PRNG

= man 3 rand

Getopt

Need to include getopt.h and
unistd.h to use

Used to parse command-line
arguments.

Typically called in a loop to
retrieve arguments

Switch statement used to
handle options
= colon indicates required argument

= optarg is set to value of option
argument

Returns -1 when no more
arguments present

int main(int arge, char* * argv){
int opt, x;
/* looping over arguments */
while(-1 != (opt = getopt(arge, argv, “x:"))){
switch(opt) {
case 'x':
X = atoi(optarg);
break;
default:
printf(“wrong argument\n");
break;
}
}
}

Examples

/* strtol Converts an ASCII string to its integer equivalent;

for example, converts -23.5 to the value -23. */
int my_value;

char my_string[] = "-23.5";

my_value = strtol (my_string, NULL, 10);

printf ("%d\n", my_value);

/* strtod Converts an ASCII string to its floating-point
equivalent; for example, converts +1776.23 to the value
1776.23. */

double my_value;
char my string[] = "+1776.23";
my_ value = strtod(my_string, NULL);

printf ("$£\n", my value);

Random number generation

#include <stdio.h>
int main(int argc, char** argv) {
int i,seed;

seed = atoi(argv([1l]);
srand (seed) ;
for (i=0; i < 10; i++)
printf("%d : %d\n", i , rand());

OUTPUT:

% ./myrand 30
0 : 493850533
1 : 1867792571
2 : 1191308030
3 : 1240413721
4 : 2134708252
5 : 1278462954
6 : 1717909034
7 : 1758326472
8 : 1352639282
9 : 1081373099

Note about Library Functions

m These functions can return error codes
= malloc could fail
= afile couldn’t be opened
= a string may be incorrectly parsed

= Remember to check for the error cases and handle the
errors accordingly
= may have to terminate the program (eg malloc fails)
= may be able to recover (user entered bad input)

Questions?

