
Chapter 4

Program Input and the Software
Design Process

Chapter 4 Topics

●  Input Statements to Read Values into a
Program using >>, and functions get,
ignore, getline

●  Prompting for Interactive Input/Output
(I/O)

●  Using Data Files for Input and Output

Chapter 4 Topics

●  Object-Oriented Design Principles
●  Functional Decomposition Methodology
●  Software Engineering Tip Documentation

C++ Input/Output

● No built-in I/O in C++
● A library provides input stream and

output stream

Keyboard Screen executing
program

istream ostream

4

<iostream> Header File

Access to a library that defines 3
objects

■  An istream object named cin (keyboard)

■  An ostream object named cout (screen)

■  An ostream object named cerr (screen)

5

Giving a Value to a Variable

In your program you can assign (give) a value to the
variable by using the assignment operator =

 ageOfDog = 12;

or by another method, such as

 cout << �How old is your dog?�;
cin >> ageOfDog;

>> Operator
>> is called the input or extraction operator
>> is a binary operator

>> is left associative

Expression Has value
cin >> age cin
Statement

cin >> age >> weight;

Extraction Operator (>>)
●  Variable cin is predefined to denote an

input stream from the standard input
device((the keyboard)

●  The extraction operator >> called �get

from� takes 2 operands; the left operand is
a stream expression, such as cin--the right
operand is a variable of simple type

Extraction Operator (>>)
●  Operator >> attempts to extract (inputs)

the next item from the input stream and to
store its value in the right operand variable

●  >> �skips over��(actually reads but does
not store anywhere) leading white space
characters as it reads your data from the
input stream(either keyboard or disk file)

SYNTAX

These examples yield the same result.

 cin >> length;
 cin >> width;

 cin >> length >> width;

Input Statements

cin >> Variable >> Variable . . .;

Whitespace Characters Include . . .

●  blanks
●  tabs
●  end-of-line (newline) characters
● newline character created by:

v hitting Enter or Return at the keyboard
or

v by using the manipulator endl or by
using the symbols "\n" in the program

char first;
char middle;
char last;

cin >> first ;
cin >> middle ;
cin >> last ;

NOTE: A file reading marker is left pointing to the
newline character after the �C� in the input stream

first middle last

At keyboard you type:
 A[space]B[space]C[Enter]

first middle last

�A� �B� �C�

At keyboard you type:
[space]25[space]J[space]2[Enter]
 int age;
 char initial;
 float bill;

 cin >> age;
 cin >> initial;
 cin >> bill;

NOTE: A file reading marker is left pointing to the
newline character after the 2 in the input stream

age initial bill

age initial bill

25 �J� 2.0

Keyboard and Screen I/O
 #include <iostream>

 cin

(of type istream)

 cout

(of type ostream)

Keyboard Screen
executing
program

input data output data

 STATEMENTS CONTENTS MARKER
 POSITION

 int i; 25 A\n
 char ch; 16.9\n
 float x;
 cin >> i; 25 A\n

 16.9\n

 cin >> ch; 25 A\n
 16.9\n

 cin >> x; 25 A\n

 16.9\n

Another example using >>

i ch x

25

25 �A�
i ch x

i ch x

i ch x
16.9 25 �A�

NOTE: shows the location of the file reading marker

•  The get() function can be used to
read a single character.

• get() obtains the very next
character from the input stream without
skipping any leading whitespace
characters

Another Way to Read char
Data

 char first;
 char middle;
 char last;

 cin.get(first);
 cin.get(middle);
 cin.get(last);

NOTE: The file reading marker is left pointing to the
space after the �B� in the input stream

first middle last

At keyboard you type:
 A[space]B[space]C[Enter]

first middle last

�A� ��� �B�

17

Use function ignore()
to skip characters

The ignore() function is used to skip (read and
discard) characters in the input stream

The call:

cin.ignore(howMany, whatChar);

will skip over up to howMany characters or until
whatChar has been read, whichever comes first

An Example Using cin.ignore()

a b c

a b c

a b c

a b c

957 34

957 34 128

957 34

NOTE: shows the location of the file reading marker
 STATEMENTS CONTENTS MARKER

 POSITION

 int a; 957 34 1235\n
 int b; 128 96\n
 int c;
 cin >> a >> b; 957 34 1235\n

 128 96\n

 cin.ignore(100, �\n�); 957 34 1235\n
 128 96\n

 cin >> c; 957 34 1235\n

 128 96\n

 Another Example Using cin.ignore()

i ch

957 34

957 34

957 34

i ch

i ch

i ch
 16 �A�

�A�

�A�

NOTE: shows the location of the file reading marker
 STATEMENTS CONTENTS MARKER

 POSITION

 int i; A 22 B 16 C 19\n
 char ch;

 cin >> ch; A 22 B 16 C 19\n

 cin.ignore(100, �B�); A 22 B 16 C 19\n

 cin >> i; A 22 B 16 C 19\n

 Example

 string message;
 cin >> message;
 cout << message;

 However . . .

String Input in C++

Input of a string is possible using the
extraction operator >>

>> Operator with Strings
Using the extraction operator(>>) to read

input characters into a string variable

●  The >> operator skips any leading
whitespace characters such as blanks and
newlines

●  It then reads successive characters into
the string

●  >> operator then stops at the first trailing
whitespace character (which is not
consumed, but remains waiting in the
input stream)

String Input Using >>

string firstName;
string lastName;
cin >> firstName >> lastName;

Suppose input stream looks like this:

 Joe Hernandez 23

What are the string values?

Results Using >>
string firstName;
string lastName;
cin >> firstName >> lastName;

Result

 �Joe� �Hernandez�

 firstName lastName

getline() Function
●  Because the extraction operator stops

reading at the first trailing whitespace, >>
cannot be used to input a string with
blanks in it

●  Use the getline function with 2
arguments to overcome this obstacle

●  First argument is an input stream variable,
and second argument is a string variable
 Example
string message;
getline(cin, message);

getline(inFileStream, str)
●  getline does not skip leading whitespace

characters such as blanks and newlines
●  getline reads successive

characters(including blanks) into the
string, and stops when it reaches the
newline character �\n��

●  The newline is consumed by getline, but
is not stored into the string variable

String Input Using getline

string firstName;
string lastName;
getline(cin, firstName);
getline(cin, lastName);

Suppose input stream looks like this:

 Joe Hernandez 23

What are the string values?

Results Using getline

 ���Joe Hernandez 23� ?

 firstName lastName

string firstName;
string lastName;
getline(cin, firstName);
getline(cin, lastName);

Interactive I/O

●  In an interactive program the user enters
information while the program is executing

●  Before the user enters data, a prompt
should be provided to explain what type of
information should be entered

●  The amount of information needed in the
prompt depends on
■ the complexity of the data being entered,

and
■ the sophistication of the person entering

the data

Prompting for Interactive I/O

// Pattern: cout(prompt) cin(read value)
cout << �Enter part number : � << endl;
cin >> partNumber;
cout << �Enter quantity ordered : � <<
endl;
cin >> quantity;
cout << �Enter unit price : � << endl;
cin >> unitPrice;
// Calculate and print results

Prompting for Interactive I/O, cont...

totalPrice = quantity * unitPrice;
cout << �Part # � << partNumber << endl;
cout << �Quantity: � << quantity
 << endl;
cout << �Unit Cost: $ � << setprecision(2)
 << unitPrice << endl;
cout << �Total Cost: $ � << totalPrice
 << endl;

USING DATA FILES FOR
INPUT AND OUTPUT

Disk Files for I/O

 your variable

(of type ifstream)

 your variable

(of type ofstream)

disk file
�myInfile.dat�

disk file
�myOut.dat�

executing
program

input data output data

 #include <fstream>

Disk I/O

To use disk I/O
■ Access #include <fstream>
■ Choose valid identifiers for your file

streams and declare them
■ Open the files and associate them with

disk names

Disk I/O, cont...

■ Use your file stream identifiers in your I/
O statements(using >> and << ,
manipulators, get, ignore)

■ Close the files

Disk I/O Statements
#include <fstream>

ifstream myInfile; // Declarations

ofstream myOutfile;

myInfile.open(�myIn.dat�); // Open files
myOutfile.open(�myOut.dat�);

// Verify that they are open
myInfile.close(); // Close files
myOutfile.close();

Opening a File

Opening a file
■ Associates the C++ identifier for your file

with the physical(disk) name for the file
– If the input file does not exist on disk,

open is not successful
– If the output file does not exist on disk,

a new file with that name is created
– If the output file already exists, it is

erased

Opening a File

Opening a file
■ Places a file reading marker at the very

beginning of the file, pointing to the first
character in the file

 Stream Fail State

●  When a stream enters the fail state,
■ Further I/O operations using that stream

have no effect at all
■ The computer does not automatically

halt the program or give any error
message

Stream Fail State

●  Possible reasons for entering fail state
include:
■ Invalid input data (often the wrong type)
■ Opening an input file that doesn�t exist
■ Opening an output file on a disk that is

already full or is write-protected

Run Time File Name Entry

#include <string>
// Contains conversion function c_str

ifstream inFile;
string fileName;

// Prompt:
cout << �Enter input file name: � << endl;
cin >> fileName;

// Convert string fileName to a C string type
inFile.open(fileName.c_str());

FUNCTIONAL
DECOMPOSITION

Functional Decomposition

•  A technique for developing a program in
which the problem is divided into more
easily handled subproblems

•  The solutions of these subproblems create
a solution to the overall problem

Functional Decomposition

 In functional decomposition, we work
from the abstract (a list of the major
steps in our solution) to the particular
(algorithmic steps that can be
translated directly into code in C++ or
another language)

Functional Decomposition

• Focus is on actions and algorithms
• Begins by breaking the solution into a

series of major steps; process continues
until each subproblem cannot be divided
further or has an obvious solution

Functional Decomposition

● Units are modules representing
algorithms
•  A module is a collection of concrete and

abstract steps that solves a subproblem
•  A module structure chart (hierarchical

solution tree) is often created

● Data plays a secondary role in
support of actions to be performed

Compute
Mileages

Write
Total Miles

Module Structure Chart

Main

Get Data

Round To
Nearest Tenth

Initialize
Total Miles Open Files

OBJECT-ORIENTED DESIGN

Object-Oriented Design
A technique for developing a program in which

the solution is expressed in terms of objects --
self-contained entities composed of data and
operations on that data

Private data

<<

 setf
.
.
.

Private data

>>

 get
.
.
.

ignore

cin cout

 setw

More about OOD
● Languages supporting OOD include:

C++, Java, Smalltalk, Eiffel, CLOS, and
Object-Pascal

● A class is a programmer-defined data
type and objects are variables of that
type

More about OOD

●  In C++, cin is an object of a data type
(class) named istream, and cout is an
object of a class ostream.

●  Header files iostream and fstream contain
definitions of stream classes

●  A class generally contains private data and
public operations (called member
functions)

Object-Oriented Design (OOD)
•  Focus is on entities called objects and

operations on those objects, all bundled
together

•  Begins by identifying the major objects in the

problem, and choosing appropriate operations
on those objects

Object-Oriented Design (OOD)

● Units are objects; programs are
collections of objects that
communicate with each other

● Data plays a leading role; algorithms
are used to implement operations on
the objects and to enable object
interaction

Two Programming
 Methodologies

 Functional Object-Oriented
 Decomposition Design

FUNCTION

FUNCTION

FUNCTION

OBJECT

Operations

 Data

OBJECT

Operations

 Data

OBJECT

Operations

 Data

What is an object?

OBJECT

Operations

 Data

set of functions

internal state

An object contains data and operations

Private data:

accoutNumber

balance

OpenAccount

WriteCheck

MakeDeposit

IsOverdrawn

GetBalance

checkingAccount

OOD Used with Large Software Projects
●  Objects within a program often model real-

life objects in the problem to be solved

●  Many libraries of pre-written classes and
objects are available as-is for re-use in
various programs

OOD Used with Large Software
Projects

●  The OOD concept of inheritance allows the
customization of an existing class to meet
particular needs without having to inspect
and modify the source code for that class

●  This can reduce the time and effort needed
to design, implement, and maintain large
systems

SOFTWARE ENGINEERING

Software Engineering Tip
Documentation

●  Documentation includes the written problem
specification, design, development history,
and actual code of a problem

●  Good documentation helps other
programmers read and understand a
program

●  Good documentation invaluable when
software is being debugged and modified
(maintained)

Software Engineering Tip
Documentation

●  Documentation is both external and
internal to the program

●  External documentation includes the
specifications, development history, and
the design documents

●  Internal documents includes the program
format and self-documenting code--
meaningful identifiers and comments

Software Engineering Tip
Documentation

●  Comments in your programs may be sufficient
for someone reading or maintaining your
programs

●  However, if the program is to be used by non-
programmers, then you must also provide a
user's manual

●  Keep documentation up-to-date and indicate
any changes you made in pertinent
documentation

CASE STUDY

Names in Multiple Formats
Problem
You are beginning to work on a problem that
needs to output names in several formats
along with the corresponding social security
number.
As a start, you decide to write a short C++
program that inputs a social security number
and a single name and displays it in the
different formats, so you can be certain that
all of your string expressions are correct.

Algorithm
Main Module Level 0

Open files
Get social security number
Get name
Write data in proper formats
Close files

Open Files Level 1
inData.open("name.dat")
outData.open("name.out")

Get Name

 Get first name
 Get middle name or initial
 Get last name

Write Data in Proper Formats
Write first name, blank, middle name, blank,
 last name, blank, social security number
Write last name, comma, first name, blank,
 middle name, blank, social security number
Write last name, comma, blank, first name,
 blank, middle initial, period, blank,
 social security number
Write first name, blank, middle initial, period,
 blank, last name

Middle initial Level 2
Set initial to middleName.substr(0, 1)

+ period
Close files

inData.close()
outData.close()

C++ Program

//***
// Format Names program
// This program reads in a social security number, a first name
// a middle name or initial, and a last name from file inData.
// The name is written to file outData in three formats:
// 1. First name, middle name, last name, and social security
// number.
// 2. last name, first name, middle name, and social
// security number
// 3. last name, first name, middle initial, and social
// security number
// 4. First name, middle initial, last name
//***

 #include <fstream> // Access ofstream
#include <string> // Access string
using namespace std;

int main()
{
 // Declare and open files
 ifstream inData;
 ofstream outData;
 inData.open("name.dat");
 outData.open("name.out");

// Declare variables
 string socialNum; // Social security number
 string firstName; // First name
 string lastName; // Last name
 string middleName; // Middle name
 string initial; // Middle initial

 // Read in data from file inData
 inData >> socialNum >> firstName >> middleName
 >> lastName;
 // Access middle initial and append a period
 initial = middleName.substr(0, 1) + '.';

 // Output information in required formats
 outData << firstName << ' ' << middleName << ' '
 << lastName << ' ' << socialNum << endl;
 outData << lastName << ", " << firstName << ' '
 << middleName << ' ' << socialNum << endl;
 outData << lastName << ", " << firstName << ' '
 << initial << ' ' << socialNum << endl;
 outData << firstName << ' ' << initial << ' '
 << lastName;

 // Close files
 inData.close();
 outData.close();
 return 0;

}

