World Headquarters

Jones and Bartlett Publishers Jones and Bartlett Publishers Jones and Bartlett Publishers
40 Tall Pine Drive Canada International

Sudbury, MA 01776 2406 Nikanna Road Barb House, Barb Mews
978-443-5000 Mississauga, ON L5C 2W6 London W6 7PA
info@jbpub.com CANADA UK

www.jbpub.com

Copyright © 2005 by Jones and Bartlett Publishers, Inc.
Cover image © Image 100 Ltd.

Library of Congress Cataloging-in-Publication Data

Dale, Nell B.
Programming and problem solving with C++ [Nell Dale, Chip Weems.— 4th ed.
p. cm.
Includes index.
ISBN 0-7637-0798-8 (pbk.)
1. C++ (Computer program language) 1. Weems, Chip. IL. Title.
QA76.73.C153D34 2004
005.13’3—dc22

‘]3.4 Understanding Character Strings

Ever since Chapter 2, we have been using the string class to store and manipulate
character strings.

string name;

name = "James Smith";
len = name.length();

In some contexts, we think of a string as a single unit of data. In other contexts, we
treat it as a group of individually accessible characters. In particular, we think of a
string as a variable-length, linear collection of homogeneous components (of type
char). Does this sound familiar? It should. As an abstraction, a string is a list of charac-
ters that, at any moment in time, has a length associ-
ated with it.
Cstring In Cand C++, a null-terminated sequence of charac- Thinking of a string as an ADT, how would we
ters stored in a char array. implement the ADT? There are many ways to imple-
ment strings. Programmers have specified and imple-
mented their own string classes—the string class
from the standard library, for instance. And the C++ language has its own built-in
notion of a string: the Cstring. In C++, a string constant (or string literal, or literal string)
is a sequence of characters enclosed by double quotes:

w4

13.4 Understanding Character Strings

A string constant is stored as a char array with enough components to hold each speci-
fied character plus one more—the null character. The null character, which is the first
character in both the ASCII and EBCDIC character sets, has internal representation 0. In
C++, the escape sequence \0 stands for the null character. When the compiler encoun-
ters the string "Hi" in a program, it stores the three characters ‘H’, ‘i’, and ‘\0’ into a
three-element, anonymous (unnamed) char array as follows:

Unnamed array

[0] ‘H'
[1] 15
(2] ‘\o'

The C string is the only kind of C++ array for which there exists an aggregate constant—
the string constant. Notice that in a C++ program, the symbols 'A' denote a single char-
acter, whereas the symbols "A" denote two: the character ‘A’ and the null character.*

In addition to C string constants, we can create C string variables. To do so, we
explicitly declare a char array and store into it whatever characters we want to, finish-
ing with the null character. Here’s an example:

char myStr[8]; // Room for 7 significant characters plus '\0'
myStr[0] = 'H';
myStr[1] = 'i';
myStr[2] = '"\0';

In C++, all C strings (constants or variables) are assumed to be null-terminated. This
convention is agreed upon by all C++ programmers and standard library functions. The
null character serves as a sentinel value; it allows algorithms to locate the end of the
string. For example, here is a function that determines the length of any C string, not
counting the terminating null character:

int StrLength(/* in */ const char str[])

// Precondition:
// str holds a null-terminated string
// Postcondition:

// Function value == number of characters in str (excluding '\0"')

*C string is not an official term used in C++ language manuals. Such manuals typically use the term string.
However, we use C string to distinguish between the general concept of a string and the built-in array repre-
sentation defined by the C and C++ languages.

697

698 | Chapter 13: Array-Based Lists

{
int 1 = 0; // Index variable
while (str[i] !'= '\0")
it
return i;
}

The value of i is the correct value for this function to return. If the array being exam-
ined is

[0] ‘B!
(1] 'y
A
[3]

then i equals 2 at loop exit. The string length is therefore 2.
The argument to the StrLength function can be a C string variable, as in the func-
tion call

cout << StrLength(myStr);
or it can be a string constant:
cout << StrLength("Hello");

In the first case, the base address of the myStr array is sent to the function, as we dis-
cussed in Chapter 12. In the second case, a base address is also sent to the function—the
base address of the unnamed array that the compiler has set aside for the string con-
stant.

There is one more thing we should say about our StrLength function. A C++ pro-
grammer would not actually write this function. The standard library supplies several
string-processing functions, one of which is named strlen and does exactly what our
StrLength function does. Later in the chapter, we look at strlen and other library
functions.

13.4 Understanding Character Strings | 699

Initializing C Strings

In Chapter 12, we showed how to initialize an array in its declaration by specifying a
list of initial values within braces, like this:

int deltal[5] = {25, -3, 7, 13, 4};
To initialize a C string variable in its declaration, you could use the same technique:
char message[8] = {'W', 'h', 'o', 'o', 'p', 's', 'I', '\0'};

However, C++ allows a more convenient way to initialize a C string. You can simply
initialize the array by using a string constant:

char message[8] = "Whoops!";

This shorthand notation is unique to C strings because there is no other kind of array
for which there are aggregate constants.

We said in Chapter 12 that you can omit the size of an array when you initialize it
in its declaration (in which case, the compiler determines its size). This feature is often
used with C strings because it keeps you from having to count the number of characters.
For example,

char promptMsg[] = "Enter a positive number:"; // Size is 25
char errMsg[] = "Value must be positive."; // Size is 24

Be very careful about one thing: C++ treats initialization (in a declaration) and
assignment (in an assignment statement) as two distinct operations. Different rules
apply. Remember that array initialization is legal, but aggregate array assignment is not.

char myStr[20] = "Hello"; // OK
myStr = "Howdy"; // Not allowed

C String Input and Output

In Chapter 12, we emphasized that C++ does not provide aggregate operations on
arrays. There is no aggregate assignment, aggregate comparison, or aggregate arithmetic
on arrays. We also said that aggregate input/output of arrays is not possible, with one
exception. C strings are that exception. Let’s look first at output.

To output the contents of an array that is not a C string, you aren't allowed to do

this:

int alpha[100];

cout << alpha; // Not allowed

700

Chapter 13: Array-Based Lists

Instead, you must write a loop and print the array elements one at a time. However,
aggregate output of a null-terminated char array (that is, a C string) is valid. The C
string can be a constant (as we’ve been doing since Chapter 2):

cout << "Results are:";
or it can be a variable:

char msg[8] = "Welcome";
co;t << msg;

In both cases, the insertion operator (<<) outputs each character in the array until the
null character is found. It is up to you to double-check that the terminating null charac-
ter is present in the array. If not, the << operator will march through the array and into
the rest of memory, printing out bytes until—just by chance—it encounters a byte whose
integer value is 0.

To input C strings, we have several options. The first is to use the extraction opera-
tor (>>), which behaves exactly the same as with string class objects. When reading
input characters into a C string variable, the >> operator skips leading whitespace char-
acters and then reads successive characters into the array, stopping at the first trailing
whitespace character (which is not consumed, but remains as the first character waiting
in the input stream). The >> operator also takes care of adding the null character to the
end of the string. For example, assume we have the following code:

char firstName[31]; // Room for 30 characters plus '\O'
char lastName[31];

cin >> firstName >> lastName;
If the input stream initially looks like this (where O denotes a blank):
O00JohnOSmith00O025

then our input statement stores ‘J’, ‘o’, ‘h’, ‘n’, and \0’ into firstName[0] through

firstName[4]; stores ‘S’, ‘m’, ‘', ‘t, ‘h’, and ‘\0’ into lastName[0] through
lastName [5]; and leaves the input stream as

00025

The >> operator, however, has two potential drawbacks.

1. If the array isn’t large enough to hold the sequence of input characters (and the
‘\0), the >> operator will continue to store characters into memory past the end of
the array.

2. The >> operator cannot be used to input a string that has blanks within it. (It stops
reading as soon as it encounters the first whitespace character.)

13.4 Understanding Character Strings | 701

To cope with these limitations, we can use a variation of the get function, a member of
the istream class. We have used the get function to input a single character, even if it
is a whitespace character:

cin.get (inputChar) ;

The get function also can be used to input C strings, in which case the function call
requires two arguments. The first is the array name and the second is an int expression.

cin.get(myStr, charCount + 1);

The get function does not skip leading whitespace characters and continues until it
either has read charCount characters or it reaches the newline character ‘\n’, whichever
comes first. It then appends the null character to the end of the string. With the statements

char oneLine[81]; // Room for 80 characters plus '\0'
cin.get(oneLine, 81);

the get function reads and stores an entire input line (to a maximum of 80 characters),
embedded blanks and all. If the line has fewer than 80 characters, reading stops at ‘\n’
but does not consume it. The newline character is now the first one waiting in the input
stream. To read two consecutive lines worth of strings, it is necessary to consume the
newline character:

char dummy;

cin.get(stringl, 81);
cin.get (dummy) ; // Eat newline before next "get"
cin.get(string2, 81);

The first function call reads characters up to, but not including, the ‘\n’. If the input of
dummy were omitted, then the input of string2 would read no characters because ‘\n’
would immediately be the first character waiting in the stream.

Finally, the ignore function—introduced in Chapter 4—can be useful in conjunction
with the get function. Recall that the statement

cin.ignore (200, '\n');
says to skip at most 200 input characters but stop if a newline was read. (The newline
character is consumed by this function.) If a program inputs a long string from the user

but only wants to retain the first four characters of the response, here is a way to do it:

char responsel[5]; // Room for 4 characters plus '\0"

cin.get (response, 5); // Input at most 4 characters

702 | Chapter 13: Array-Based Lists

cin.ignore (100, '\n'); // Skip remaining chars up to and
// including '\n'

The value 100 in the last statement is arbitrary. Any “large enough” number will do.
Here is a table that summarizes the differences between the >> operator and the get
function when reading C strings:

Skips Leading

Statement Whitespace? Stops Reading When?

cin >> inputStr; Yes At the first trailing whitespace character
(which is not consumed)

cin.get (inputStr, 21); No When either 20 characters are read or \n’ is

encountered (which is not consumed)

Finally, we revisit a topic that came up in Chapter 4. Certain library functions and
member functions of system-supplied classes require C strings as arguments. An exam-
ple is the ifstream class member function named open. To open a file, we pass the
name of the file as a C string, either a constant or a variable:

ifstream filel;
ifstream file2;

char fileName[51]; // Max. 50 characters plus '\O'
filel.open("students.dat");

cin.get(fileName, 51); // Read at most 50 characters
cin.ignore (100, '\n'); // Skip rest of input line

file2.open(fileName) ;

As discussed in Chapter 4, if our file name is contained in a string class object, we
still can use the open function, provided we use the string class member function
named c_str to convert the string to a C string:

ifstream inFile;
string fileName;

cin >> fileName;
inFile.open(fileName.c_str());

Comparing these two code segments, you can observe a major advantage of the string
class over C strings: A string in a string class object has unbounded length, whereas the
length of a C string is bounded by the array size, which is fixed at compile time.

C String Library Routines

Through the header file cstring, the C++ standard library provides a large assortment
of C string operations. In this section, we discuss three of these library functions:

13.4 Understanding Character Strings | 703

strlen, which returns the length of a string; stremp, which compares two strings
using the relations less-than, equal, and greater-than; and strecpy, which copies one
string to another. Here is a summary of strlen, stremp, and strepy:

Header File Function Function Value Effect
{cstring> strlen(str) Integer length of str (excluding \0’) Computes length of
str

{cstring> stremp (strl, str2) Aninteger<0,ifstrl < str2 Compares strl and
Theinteger 0,if strl1= str2 str2
Aninteger>0, if strl > str2

{ecstring> strepy(toStr, fromStr) Baseaddressof toStr Copies fromStr
(usually ignored) (including "\0’) to

toStr, overwriting
what was there; toStr
must be large enough
to hold the result

The strlen function is similar to the StrLength function we wrote earlier. It
returns the number of characters in a C string prior to the terminating ‘\0’. Here’s an
example of a call to the function:

#finclude <cstring>

char subject[] = "Computer Science";
cout << strlen(subject); // Prints 16

The strcpy routine is important because aggregate assignment with the = operator
is not allowed on C strings. In the following code fragment, we show the wrong way
and the right way to perform a string copy.
#finclude {cstring>

char myStr[100];

myStr = "Abracadabra"; // No
strepy (myStr, "Abracadabra"); /] Yes

704

Chapter 13: Array-Based Lists

In strepy's argument list, the destination string is the one on the left, just as an assign-
ment operation transfers data from right to left. It is the caller’s responsibility to make
sure that the destination array is large enough to hold the result.

The strcpy function is technically a value-returning function; it not only copies
one C string to another, but also returns as a function value the base address of the des-
tination array. The reason why the caller would want to use this function value is not at
all obvious, and we don’t discuss it here. Programmers nearly always ignore the func-
tion value and simply invoke strcpy as if it were a void function (as we did above).
You may wish to review the Background Information box in Chapter 8 entitled “Ignor-
ing a Function Value.”

The stremp function is used for comparing two strings. The function receives two C
strings as parameters and compares them in lexicographic order (the order in which they
would appear in a dictionary)—the same ordering used in comparing string class
objects. Given the function call stremp(strl, str2), the function returns one of the
following int values: a negative integer, if strl < str2 lexicographically; the value 0,
if strl = str2; or a positive integer, if strl > str2. The precise values
of the negative integer and the positive integer are unspecified. You simply test to see if
the result is less than 0, O, or greater than 0. Here is an example:

if (stremp(strl, str2) < 0) // If strl is less than str2

We have described only three of the string-handling routines provided by the stan-
dard library. These three are the most commonly needed, but there are many more. If
you are designing or maintaining programs that use C strings extensively, you should
read the documentation on strings for your C++ system.

String Class or C Strings?

When working with string data, should you use a class like string, or should you use C
strings? From the standpoints of clarity, versatility, and ease of use, there is no contest.
Use a string class. The standard library string class provides strings of unbounded
length, aggregate assignment, aggregate comparison, concatenation with the + operator,
and so forth.

However, it is still useful to be familiar with C strings. Among the thousands of
software products currently in use that are written in C and C++, most (but a declining
percentage) use C strings to represent string data. In your next place of employment, if
you are asked to modify or upgrade such software, understanding C strings is essential.
Additionally, using a string class is one thing; implementing it is another. Someone
must implement the class using a concrete data representation. In your employment,
that someone might be you, and the underlying data representation might very well be
a C string!

