
Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

C H A P T E R 2

Input,
Processing,
and Output

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Topics
 Designing a Program
 Input, Processing, and Output
 Displaying Output with print Function
 Comments
 Variables
 Reading Input from the Keyboard
 Performing Calculations
 More About Data Output

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Designing a Program
 Programs must be designed before
they are written
 Program development cycle:
 Design the program
 Write the code
 Correct syntax errors
 Test the program
 Correct logic errors

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Designing a Program (cont’d.)
 Design is the most important part of the
program development cycle
 Understand the task that the program is
to perform
 Work with customer to get a sense what the
program is supposed to do
 Ask questions about program details
 Create one or more software requirements

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Designing a Program (cont’d.)
 Determine the steps that must be taken
to perform the task
 Break down required task into a series of
steps
 Create an algorithm, listing logical steps that
must be taken

Algorithm: set of well-defined logical
steps that must be taken to perform a
task

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Pseudocode
Pseudocode: fake code
 Informal language that has no syntax rule
 Not meant to be compiled or executed
 Used to create model program

 No need to worry about syntax errors, can focus
on program’s design
 Can be translated directly into actual code in any
programming language

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Flowcharts
Flowchart: diagram that graphically
depicts the steps in a program
 Ovals: terminal symbols
 Parallelograms: input and output symbols
 Rectangles: processing symbols
 Symbols are connected by arrows that
represent the flow of the program

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Input, Processing, and Output
 Typically, computers perform three-
step process
 Receive input

 Input: any data that the program receives while it is
running

 Perform some process on the input
 Example: mathematical calculation

 Produce output

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Displaying Output with the
print Function

Function: piece of prewritten code that
performs an operation
print function: displays output on the
screen
Argument: data given to a function
 Example: data that is printed to screen

 Statements in a program execute in the
order that they appear
 From top to bottom

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Strings and String Literals
String: sequence of characters that is
used as data
String literal: string that appears in
actual code of a program
 Must be enclosed in single (‘) or double (“)
quote marks
 String literal can be enclosed in triple quotes
(''' or """)
 Enclosed string can contain both single and double
quotes and can have multiple lines

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Comments
Comments: notes of explanation within
a program
 Ignored by Python interpreter

 Intended for a person reading the program’s code
 Begin with a # character

End-line comment: appears at the end
of a line of code
 Typically explains the purpose of that line

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variables
Variable: name that represents a value
stored in the computer memory
 Used to access and manipulate data stored in
memory
 A variable references the value it represents

Assignment statement: used to create a
variable and make it reference data
 General format is variable = expression

 Example: age = 29
Assignment operator: the equal sign (=)

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variables (cont’d.)
 In assignment statement, variable
receiving value must be on left side
 A variable can be passed as an
argument to a function
 Variable name should not be enclosed in
quote marks

 You can only use a variable if a value is
assigned to it

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variable Naming Rules
 Rules for naming variables in Python:
 Variable name cannot be a Python key word
 Variable name cannot contain spaces
 First character must be a letter or an
underscore
 After first character may use letters, digits, or
underscores
 Variable names are case sensitive

 Variable name should reflect its use

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Displaying Multiple Items with
the print Function

 Python allows one to display multiple
items with a single call to print
 Items are separated by commas when passed
as arguments
 Arguments displayed in the order they are
passed to the function
 Items are automatically separated by a space
when displayed on screen

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variable Reassignment
 Variables can reference different values
while program is running
Garbage collection: removal of values
that are no longer referenced by
variables
 Carried out by Python interpreter

 A variable can refer to item of any type
 Variable that has been assigned to one type
can be reassigned to another type

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Numeric Data Types, Literals,
and the str Data Type

Data types: categorize value in memory
 e.g., int for integer, float for real number, str
used for storing strings in memory

Numeric literal: number written in a
program
 No decimal point considered int, otherwise,
considered float

 Some operations behave differently
depending on data type

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reassigning a Variable to a
Different Type

 A variable in Python can refer to items of
any type

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reading Input from the
Keyboard

 Most programs need to read input from
the user
 Built-in input function reads input
from keyboard
 Returns the data as a string
 Format: variable = input(prompt)

 prompt is typically a string instructing user to
enter a value

 Does not automatically display a space after
the prompt

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reading Numbers with the
input Function

 input function always returns a string
 Built-in functions convert between data
types
 int(item) converts item to an int
 float(item) converts item to a float
Nested function call: general format:
function1(function2(argument))
 value returned by function2 is passed to function1

 Type conversion only works if item is valid
numeric value, otherwise, throws exception

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Performing Calculations
 Math expression: performs calculation
and gives a value

Math operator: tool for performing calculation
Operands: values surrounding operator
 Variables can be used as operands

 Resulting value typically assigned to variable
 Two types of division:
 / operator performs floating point division
 // operator performs integer division

 Positive results truncated, negative rounded away
from zero

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Operator Precedence and
Grouping with Parentheses
 Python operator precedence:
1.  Operations enclosed in parentheses

  Forces operations to be performed before others

2.  Exponentiation (**)
3.  Multiplication (*), division (/ and //), and

remainder (%)
4.  Addition (+) and subtraction (-)
 Higher precedence performed first
 Same precedence operators execute from left
to right

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Exponent Operator and
the Remainder Operator

Exponent operator (**): Raises a
number to a power
Xy is written in Python as x**y

 Remainder operator (%): Performs
division and returns the remainder
 a.k.a. modulus operator
 e.g., 4%2 is 0, 5%2 is 1
 Typically used to convert times and distances,
and to detect odd or even numbers

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Converting Math Formulas to
Programming Statements

 Operator required for any mathematical
operation
 When converting mathematical
expression to programming statement:
 May need to add multiplication operators
 May need to insert parentheses

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Mixed-Type Expressions and
Data Type Conversion

 Data type resulting from math
operation depends on data types of
operands
 Two int values: result is an int
 Two float values: result is a float
 int and float: int temporarily converted to
float, result of the operation is a float
 Mixed-type expression

 Type conversion of float to int causes
truncation of fractional part

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Breaking Long Statements
into Multiple Lines

 Long statements cannot be viewed on
screen without scrolling and cannot be
printed without cutting off
Multiline continuation character (\):
Allows to break a statement into
multiple lines
 Example:
 print(‘my first name is’,\
first_name)

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

More About Data Output
 print function displays line of output
 Newline character at end of printed data
 Special argument end=‘delimiter’ causes
print to place delimiter at end of data
instead of newline character

 print function uses space as item
separator
 Special argument sep=‘delimiter’ causes
print to use delimiter as item separator

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

More About Data Output
(cont’d.)

 Special characters appearing in string
literal
 Preceded by backslash (\)

 Examples: newline (\n), horizontal tab (\t)
 Treated as commands embedded in string

 When + operator used on two strings in
performs string concatenation
 Useful for breaking up a long string literal

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Formatting Numbers
 Can format display of numbers on
screen using built-in format function
 Two arguments:

 Numeric value to be formatted
 Format specifier

 Returns string containing formatted number
 Format specifier typically includes precision
and data type
 Can be used to indicate scientific notation, comma
separators, and the minimum field width used to
display the value

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Formatting Numbers (cont’d.)
 The % symbol can be used in the format
string of format function to format
number as percentage
 To format an integer using format
function:
 Use d as the type designator
 Do not specify precision
 Can still use format function to set field
width or comma separator

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Summary
 This chapter covered:
 The program development cycle, tools for
program design, and the design process
 Ways in which programs can receive input,
particularly from the keyboard
 Ways in which programs can present and
format output
 Use of comments in programs
 Uses of variables
 Tools for performing calculations in programs

