
 	 Page	1	 	
	 	

Enhancing	Web	Pages	with	JavaScript	

Introduction	
• In this Tour we will cover:

o The basic concepts of programming
o How those concepts are translated into JavaScript
o How JavaScript can be used to enhance web pages

• The basic concepts:
o A programming language is an artificial language that is designed to communicate instructions

to a computer.
o A program is a series of steps written in a programming language that specify a task we want the

computer to accomplish.
o Input is information given from the user to the computer while a program is running.
o Output is information provided from the computer to the user via a running program.
o Constants are things that cannot change, e.g., 2, 27, John.
o Variables can be thought of as buckets that can hold values. This is like x and y in algebra.
o Functions are small pieces of a program that can be used over and over to make programming

easier.
o Conditional expressions are expressions that ask a question, e.g., is my checking account

balance greater than 0?
• The programming language (JavaScript):

o It is a scripting language which means it can talk to the computer from inside other programs that
are running (for instance a web browser).

o It is very popular for web programming.
o It is not related to Java. Initially it was named Mocha, then it became LiveScript, but it was

renamed JavaScript when Netscape agreed to bundle the Java runtime with its browser.
o While JavaScript is primarily used to enhance websites, it is also used in other environments – for

example in desktop widgets and the Unity game engine.

• Through this series of JavaScript programming steps you will learn how to enhance your web site that
you developed in the previous module.

Guided	Tour	
There are a number of tutorials available for JavaScript if you wish to further explore its features or feel
you need more information after this Tour. One example is: http://www.w3schools.com/js/

JavaScript	Format	
All JavaScript statements on a web page will either be between the <head> and the </head> or

between the <body> and the </body>. You cannot start it in the head section and finish it in the body
section. You can also put JavaScript code within some HTML tags to handle events. And sometimes you
put JavaScript in a completely different file from the actual webpage file.
 You insert JavaScript in either the head or the body using the <script> </script> tags. Since there
are many kinds of scripting languages, you have to tell the computer that you’re using JavaScript in the

 	 Page	2	 	
	 	

script tag. So the tags really look like: <script type = "text/javascript"> </script>. Other
things can be added to the script tag, but they are beyond the scope of this tutorial.

1. Open up the Komodo editor and type in the following JavaScript code to create your first JavaScript

application

 <!DOCTYPE html>
 <html>
 <head>
 <title>First JavaScript Program</title>
 </head>
 <body>
 <script type="text/javascript">
 alert("Another Annoying Pop-up");
 </script>
 </body>
 </html>
Type carefully. Remember that JavaScript requires perfect adherence to syntax.

2. Save the file you just created as pop.html (you can save it on your thumb drive or in the documents

folder).
3. Open pop.html using Chrome or Firefox.

 Your newly created web page should look like:

Creating	Output	Using	JavaScript	

Output statements are commands that tell the computer to print something somewhere. We might want
something printed on the screen, or on a webpage, or we might want something printed in a file. For this

 	 Page	3	 	
	 	

class, we will just print things to a webpage. In JavaScript, a way to print something to a webpage is to
use the document.write() command. The syntax for that command is:

 document.write("WhateverYouWantToPrint");

For example, if I want to print Hello World on the screen as an H1 heading, I would put the following
command in a script:

 document.write("<h1>Hello World</h1>");

Notice that the line ends in a semicolon, and whatever HTML you want to write needs to be inside double
quotes.

1. Create the following web page (you can either create a new one or alter the preceding one)
 <!DOCTYPE html>
 <html>
 <head>
 <title>First JavaScript page</title>
 </head>
 <body>

 <script type="text/javascript">
 document.write("<h1>Hello World</h1>");
 </script>
 </body>
 </html>

2. Open this file using Chrome or Firefox. Your new web page should look like:

 	 Page	4	 	
	 	

3. You can have more than one output statement. Modify your page to print two things as follows:
 <!DOCTYPE html>
 <html>
 <head>
 <title>First JavaScript page</title>
 </head>
 <body>
 <script type="text/javascript">
 document.write("<h1>Hello World</h1>");
 document.write("<h2>Or Whoever Is Listening</h2>");
 </script>
 </body>
 </html>
This will result in the following web page:

Your first thought might be, “I could have done that with one line of HTML! Why on earth would I want to
put in three or four lines of JavaScript when one line of HTML will work?” Well, in the preceding example,
you would be correct. But what if you wanted the page to actually perform some kind of calculation? For
instance, what if you wanted to calculate the value of 2*3? Or the value of 2 times some user’s chosen
value? The next section describes how JavaScript can be used to perform calculations.

Performing	Calculations	with	JavaScript	
Let’s try to calculate the value of 2*3. Start by trying the following HTML code in Komodo editor and save
it as calculate.html:
 <!DOCTYPE html>
 <html>
 <body>
 2*3 = 2*3
 </body>
 </html>

Open this file using Chrome or Firefox. Unfortunately the results are:

 	 Page	5	 	
	 	

which is not at all what we wanted. I know, I know. You could have just put 2*3=6, but the point is to
get the computer to figure out the answer! To do this you need to make up a name to represent what
information the computer will give us. These made up names are called variables. In this example a
good made up name for what we want might be “answer”. So we want to say something to the computer
like: “Computer I need an answer to the problem 2*3.” And the JavaScript for that would be:
 answer = 2*3;
What you want (your variable) comes first. What you want the computer to do to find your answer comes
second. Note there’s an “=” between what you want and what the computer has to do and a semicolon at
the end of it all. Modify this web page to:
 <!DOCTYPE html>
 <html>
 <head>
 <title>First JavaScript page</title>
 </head>
 <body>
 <script type="text/javascript">
 answer = 2*3;
 document.write("2*3="+ answer);
 </script>
 </body>
 </html>
The document.write() line looks a little funny. It turns out the only thing that you can write to a page is
a string of characters, which you would normally put between double quotes in the document.write()
line. But if you need to print something else, you can add it on to the list of characters being printed by
using a “+”. Your resulting web page should be:

Try the following example on your own to see what the resulting web page looks like:

 	 Page	6	 	
	 	

<!DOCTYPE html>
<html>
 <head>
 <title>First JavaScript page</title>
 </head>
 <body>
 <script type="text/javascript">
 timesanswer = 2*3;
 plusanswer = 2+3;
 document.write("2*3="+ timesanswer + " and 2+3=" + plusanswer);
 </script>
 </body>
</html>

JavaScript	Functions	–	Doing	Something	Over	and	Over	the	Easy	Way	
 Let’s look again at the web page that calculates the value of 2*3. What if we wanted to calculate the
value of 10*5 and the value of 1024*4 as well as the value of 2*3. Well, we could just copy and paste
lines of code and do a little changing of the lines and come up with something like the following:
 <!DOCTYPE html>
 <html>
 <head>
 <title>First JavaScript page</title>
 </head>
 <body>
 <script type="text/javascript">
 answer = 2*3;
 document.write("2*3="+ answer + "

");
 answer = 10*5;
 document.write("10*5="+ answer + "

");
 answer = 1024*4;
 document.write("1024*4="+ answer + "

");
 </script>
 </body>
 </html>
This is not too bad for just three calculations. But what if I wanted to do 100 calculations, or what if I
wanted to design a web-based calculator – which you probably wouldn’t, but hang in there. Calculators
are easy to understand because you’ve been using them for years, so they make good examples. J
 Anyway, back to the point. You don’t want to have to copy and paste and then edit a bunch of lines.
Instead, you can put a JavaScript function in the head and simply tell it to do the work with the
appropriate numbers. Type in the following example that uses a function in function.html file:

 	 Page	7	 	
	 	

 <!DOCTYPE html>
 <html>
 <head>
 <title>First JavaScript page</title>
 <script type="text/javascript">
 function calculateAnswers(number1, number2){
 timesanswer = number1*number2;
 document.write(number1 + "*" + number2 + "=" + timesanswer);
 document.write("

");
 }
 </script>
 </head>
 <body>
 <script type="text/javascript">
 calculateAnswers(2,3);
 calculateAnswers(10,5);
 calculateAnswers(1024,4);
 </script>
 </body>
 </html>
Which should give you a page that looks like:

Notice the function appears in the head portion has a format like:
 function NameOfFunction (list of variables the function needs to do its work){
 JavaScript statements to do the function
 }
Don’t forget the curly braces. Those are like the beginning and ending tags of a function. So in the above
example, the name of the function is
 calculateAnswers
The list of parameters (variables) the function needs to do its work is
 number1, number2
The function is called in the body of the webpage by using its name and listing the constants you want
the function to assign to its parameters. In our example the function is called three times.

Making	Things	More	Flexible	With	User	Input		-	Modify	function.html		
 The preceding example would have been more interesting if the user could have determined which
numbers to multiply. To do that we need an HTML form.
 HTML forms are created using the <form> and </form> tags. As with other tags, we do not have time
to cover all the attributes of form tags in this class. In order to get the user input, you need to place an

 	 Page	8	 	
	 	

<input> tag inside the form tags. Input tags have various types (such as TEXT, BUTTON, and CHECKBOX
to name a few). Each type has attributes associated with it. For instance
 <input type="TEXT" size="10" name="num1">
says there will be a box on the page where the user can type in data and up to 10 characters will be
visible in the box, and whatever they type in, we will call that num1.
 Type in the following code to allow the user to input two numbers and pop up the answer in an alert:
 <!DOCTYPE html>
 <html>
 <head>
 <title>First JavaScript page</title>
 <script type="text/javascript">
 function calculateAnswers(number1,number2){
 timesanswer = number1*number2;
 alert("The answer is: " + timesanswer);
 }
 </script>
 </head>
 <body>
 Enter two numbers to be multiplied:
 <form>
 <p>Number1: <input type="TEXT" size="10" name="num1" />
 <p>Number2: <input type="TEXT" size="10" name="num2" />
 <p><input type="BUTTON" value="Calculate Answer" onClick =
"calculateAnswers(num1.value, num2.value);" /></p>
 </form>
 </body>
 </html>
An alert is a simple popup window that has an ok button to close it. What goes in the parentheses of an
alert is what you want the popup window to say.

The function is called in the third input tag. onClick is an event that is triggered when a user clicks on
something (in this case a BUTTON). The
 onClick = "calculateAnswers(num1.value, num2.value);"
tells the program to do the JavaScript function calculateAnswers using the values for num1 and num2 that
the user typed in whenever they click the button. The value attribute in the third input tag tells what is
displayed on the button.
 Note: by using the form and function, the user can multiply however many pairs of numbers they
want.

Making	Decisions	With	JavaScript:		Modify	function.html	
 Change the preceding example so it will do division instead of multiplication:
 <!DOCTYPE html>
 <html>
 <head>
 <title>First JavaScript page</title>
 <script type="text/javascript">
 function calculateAnswers(number1,number2){
 divideanswer = number1/number2;

 	 Page	9	 	
	 	

 alert("The answer is: " + divideanswer);
 }
 </script>
 </head>
 <body>
 Enter two numbers to be divided:
 <form>
 <p>Number1: <input type="TEXT" size="10" name="num1" />
 <p>Number2: <input type="TEXT" size="10" name="num2" />

 <p><input type="BUTTON" value="Calculate Answer" onClick =
"calculateAnswers(num1.value, num2.value);" /></p>

 </form>
 </body>
 </html>
Now try out the web page and try several numbers. Be sure to try a divide by 0 to see what happens.

“The answer is infinity” is probably not what we want to happen. We’d rather have it say “Error! Divide by
0.” That’s where a conditional statement comes in handy. A conditional can be thought of as “If
something happens, take some action, otherwise take a different action.” More specifically, the JavaScript
syntax is:
 if(something happens){
 take some action
 } else {
 take a different action
 }
Notice the if and the else have curly braces to mark the beginning and ending of their section just like you
do in a function. Of course “take some action” and “take a different action” are actual JavaScript
statements. Frequently the “something happens” is just a comparison of two things (like “is this person’s
age over 18” or in our case “is num2 equal to 0”). There are six common comparisons:

Symbol Meaning
== Equal to, and yes that is two = signs right next to each

other
!= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

 	 Page	10	 	
	 	

Given this information, the conditional statement in our example would look like
 if(number2 == 0){
 alert("You cannot divide by 0");
 } else {
 divideanswer = number1/number2;
 alert("The answer is: " + divideanswer);
 }
Fix your web page so it correctly handles a divide by 0, and view it to see if it will work:
 <!DOCTYPE html>
 <html>
 <head>
 <title>First JavaScript page</title>
 <script type="text/javascript">
 function calculateAnswers(number1,number2){
 if(number2 == 0){
 alert("You cannot divide by 0");
 } else {
 divideanswer = number1/number2;
 alert("The answer is: " + divideanswer);
 }
 }
 </script>
 </head>
 <body>
 Enter two numbers to be divided:
 <form>
 <p>Number1: <input type="TEXT" size="10" name="num1" />
 <p>Number2: <input type="TEXT" size="10" name="num2" />
 <p><input type="BUTTON" value="Calculate Answer"
onClick="calculateAnswers(num1.value, num2.value);" /></p>
 </form>
 </body>
 </html>

Upload your function.html to the CS webserver. Verify your webpage is available online at:
https://www.cs.mtsu.edu/~YourPipelineID/function.html.

Now, make a new webpage called simpleCalculator.html that allows a user to input a number, a
mathematical operator and another number. Have a button that uses those three inputs and calls a
function. Display the mathematical equation and it’s answer with a call to document.write(). Your
calculator should work for: +, -, *, and /. For example, given the following inputs:

 	 Page	11	 	
	 	

 would result in . Additionally,

 would result in: .
Note, if you have a line of JavaScript like:

answer = number1 + number2;
document.write("Answer: " + answer);

by default, JavaScript assumes that “+” means concatenation. If the variable number1 is currently storing
3 and number2 is currently storing 5 then, the following will be displayed:

Answer: 35
which is clearly not the answer. One way to make JavaScript add (instead of concatenate) is to first pass
each variable through the Number() function:

answer = Number(number1) + Number(number2);
document.write("Answer: " + answer);

which, given the same values for the variables, will display:
Answer: 8

Rubric	
Criteria Points
Used exact filename, simpleCalculator.html 2
Interface (three input fields and a submit button) 4
Called function and passed it an operator character
and numbers 2
Function definition, including 3 parameters 2
if-else statements testing the operator 8
Correctly displays results 8
Overall 5

 	 Page	12	 	
	 	

More	Examples	

*You’ll find a collection of them including those detailed below at:
http://www.cs.mtsu.edu/~djoaquin

*Calculate the average of three test scores http://www.cs.mtsu.edu/~pettey/1150/form4.html

*Vote with alert after each button click http://www.cs.mtsu.edu/~pettey/1150/vote.html

*Vote with alert only after announce the winner button is clicked
http://www.cs.mtsu.edu/~pettey/1150/vote2.html

*Read info and send email if over 18 http://www.cs.mtsu.edu/~pettey/1150/email.html

